Suppr超能文献

关于人工智能在髋关节和膝关节置换术中应用的担忧:文献综述及有意义应用的建议

Concerns surrounding application of artificial intelligence in hip and knee arthroplasty : a review of literature and recommendations for meaningful adoption.

作者信息

Polisetty Teja S, Jain Samagra, Pang Michael, Karnuta Jaret M, Vigdorchik Jonathan M, Nawabi Danyal H, Wyles Cody C, Ramkumar Prem N

机构信息

Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, Texas, USA.

出版信息

Bone Joint J. 2022 Dec;104-B(12):1292-1303. doi: 10.1302/0301-620X.104B12.BJJ-2022-0922.R1.

Abstract

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular ("AI/machine learning"), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered.Cite this article:  2022;104-B(12):1292-1303.

摘要

围绕人工智能(AI)在髋关节和膝关节置换术中相关应用的文献大量涌现。然而,尽管有广泛的应用,但在我们继续探索AI的有意义且合适的用途时,尚未实现从根本上改变关节置换术实践和服务的重大进展。对2018年至2021年间关于基于图像分析、价值医疗、远程患者监测和增强现实的髋关节和膝关节置换术的AI文献进行了综述。总结了在关节置换术研究中围绕AI的有意义使用和适当方法学方法的担忧。在发表的233篇与AI相关的骨科文章中,178篇(76%)为原创研究,其余为社论或综述。共有52%的与AI相关的原创研究涉及髋关节和膝关节置换术(n = 92),并进行了叙述性综述。三项研究进行了外部验证。当今研究存在的陷阱包括混淆术语(“AI/机器学习”)、重新包装有限的登记数据、过早发布内部验证的预测模型、评估模型架构而非输入数据、隐瞒代码以及使用过时的基于回归的指南评估研究。虽然AI已应用于各种髋关节和膝关节置换术应用,但临床影响有限,如果问题有意义、方法严谨透明、数据丰富且模型经过外部验证,未来仍很有前景。采用有意义AI的简单检查点包括确保应用专注于:行政支持而非临床评估和管理;先进模型的必要性;以及所回答问题的新颖性。引用本文:2022;104 - B(12):1292 - 1303。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验