Farrow Luke, Ashcroft George Patrick, Zhong Mingjun, Anderson Lesley
Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom.
Grampian Orthopaedics, National Health Service Grampian, Aberdeen, United Kingdom.
JMIR Res Protoc. 2022 May 11;11(5):e37092. doi: 10.2196/37092.
Hip and knee osteoarthritis is substantially prevalent worldwide, with large numbers of older adults undergoing joint replacement (arthroplasty) every year. A backlog of elective surgery due to the COVID-19 pandemic, and an aging population, has led to substantial issues with access to timely arthroplasty surgery. A potential method to improve the efficiency of arthroplasty services is by increasing the percentage of patients who are listed for surgery from primary care referrals. The use of artificial intelligence (AI) techniques, specifically machine learning, provides a potential unexplored solution to correctly and rapidly select suitable patients for arthroplasty surgery.
This study has 2 objectives: (1) develop a cohort of patients with referrals by general practitioners regarding assessment of suitability for hip or knee replacement from National Health Service (NHS) Grampian data via the Grampian Data Safe Haven and (2) determine the demographic, clinical, and imaging characteristics that influence the selection of patients to undergo hip or knee arthroplasty, and develop a tested and validated patient-specific predictive model to guide arthroplasty referral pathways.
The AI to Revolutionise the Patient Care Pathway in Hip and Knee Arthroplasty (ARCHERY) project will be delivered through 2 linked work packages conducted within the Grampian Data Safe Haven and Safe Haven Artificial Intelligence Platform. The data set will include a cohort of individuals aged ≥16 years with referrals for the consideration of elective primary hip or knee replacement from January 2015 to January 2022. Linked pseudo-anonymized NHS Grampian health care data will be acquired including patient demographics, medication records, laboratory data, theatre records, text from clinical letters, and radiological images and reports. Following the creation of the data set, machine learning techniques will be used to develop pattern classification and probabilistic prediction models based on radiological images. Supplemental demographic and clinical data will be used to improve the predictive capabilities of the models. The sample size is predicted to be approximately 2000 patients-a sufficient size for satisfactory assessment of the primary outcome. Cross-validation will be used for development, testing, and internal validation. Evaluation will be performed through standard techniques, such as the C statistic (area under curve) metric, calibration characteristics (Brier score), and a confusion matrix.
The study was funded by the Chief Scientist Office Scotland as part of a Clinical Research Fellowship that runs from August 2021 to August 2024. Approval from the North Node Privacy Advisory Committee was confirmed on October 13, 2021. Data collection started in May 2022, with the results expected to be published in the first quarter of 2024. ISRCTN registration has been completed.
This project provides a first step toward delivering an automated solution for arthroplasty selection using routinely collected health care data. Following appropriate external validation and clinical testing, this project could substantially improve the proportion of referred patients that are selected to undergo surgery, with a subsequent reduction in waiting time for arthroplasty appointments.
ISRCTN Registry ISRCTN18398037; https://www.isrctn.com/ISRCTN18398037.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/37092.
髋膝关节骨关节炎在全球范围内极为普遍,每年有大量老年人接受关节置换手术(关节成形术)。由于新冠疫情导致择期手术积压以及人口老龄化,及时获得关节成形术手术面临重大问题。提高关节成形术服务效率的一种潜在方法是增加通过初级保健转诊而被列入手术名单的患者比例。人工智能(AI)技术,特别是机器学习,为正确、快速地选择适合关节成形术手术的患者提供了一个潜在的未被探索的解决方案。
本研究有两个目标:(1)通过格兰扁数据安全港,从英国国家医疗服务体系(NHS)格兰扁的数据中,建立一个由全科医生转诊的关于评估髋关节或膝关节置换适用性的患者队列;(2)确定影响选择接受髋关节或膝关节成形术患者的人口统计学、临床和影像学特征,并开发一个经过测试和验证的针对特定患者的预测模型,以指导关节成形术转诊途径。
“人工智能革新髋膝关节成形术患者护理途径(ARCHERY)”项目将通过在格兰扁数据安全港和安全港人工智能平台内开展的两个相互关联的工作包来实施。数据集将包括一组年龄≥16岁的个体,这些个体在2015年1月至2022年1月期间因考虑择期初次髋关节或膝关节置换而被转诊。将获取与之关联的经过伪匿名处理的NHS格兰扁医疗保健数据,包括患者人口统计学信息、用药记录、实验室数据、手术记录、临床信件文本以及放射影像和报告。在创建数据集之后,将使用机器学习技术基于放射影像开发模式分类和概率预测模型。补充的人口统计学和临床数据将用于提高模型的预测能力。预计样本量约为2000名患者——这一规模足以对主要结局进行满意的评估。交叉验证将用于模型的开发、测试和内部验证。将通过标准技术进行评估,如C统计量(曲线下面积)指标、校准特征(Brier评分)和混淆矩阵。
该研究由苏格兰首席科学家办公室资助,作为2021年8月至2024年8月临床研究奖学金的一部分。2021年10月13日获得了北节点隐私咨询委员会的批准。数据收集于2022年5月开始,预计结果将于2024年第一季度公布。ISRCTN注册已完成。
该项目朝着利用常规收集的医疗保健数据提供关节成形术选择的自动化解决方案迈出了第一步。经过适当的外部验证和临床测试后,该项目可大幅提高被选中接受手术的转诊患者比例,进而减少关节成形术预约的等待时间。
ISRCTN注册库ISRCTN18398037;https://www.isrctn.com/ISRCTN18398037。
国际注册报告识别码(IRRID):PRR1-10.2196/37092。