Suppr超能文献

用于基于稳态视觉诱发电位的脑机接口快速校准的小数据最小二乘变换(sd-LST)

Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-Based BCIs.

作者信息

Bian Rui, Wu Huanyu, Liu Bin, Wu Dongrui

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:446-455. doi: 10.1109/TNSRE.2022.3225878. Epub 2023 Feb 1.

Abstract

Steady-state visual evoked potential (SSVEP) is one of the most popular brain-computer interface (BCI) paradigms, with high information transmission rate and signal-to-noise ratio. Many calibration-free and calibration-based approaches have been proposed to improve the performance of SSVEP-based BCIs. This paper considers a quick calibration scenario, where there are plenty of data from multiple source subjects, but only a small number of calibration trials from a subset of stimulus frequencies for the new subject. We propose small data least-squares transformation (sd-LST) to solve this problem. Experiments on three publicly available SSVEP datasets demonstrated that sd-LST outperformed several classical or state-of-the-art approaches, with only about 10 calibration trials for 40-target SSVEP-based BCI spellers.

摘要

稳态视觉诱发电位(SSVEP)是最流行的脑机接口(BCI)范式之一,具有高信息传输率和信噪比。已经提出了许多无需校准和基于校准的方法来提高基于SSVEP的BCI的性能。本文考虑了一种快速校准场景,即有来自多个源受试者的大量数据,但新受试者只有来自刺激频率子集的少量校准试验。我们提出了小数据最小二乘变换(sd-LST)来解决这个问题。在三个公开可用的SSVEP数据集上进行的实验表明,sd-LST优于几种经典或最新方法,对于基于40目标SSVEP的BCI拼写器,只需大约10次校准试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验