Bian Rui, Wu Huanyu, Liu Bin, Wu Dongrui
IEEE Trans Neural Syst Rehabil Eng. 2023;31:446-455. doi: 10.1109/TNSRE.2022.3225878. Epub 2023 Feb 1.
Steady-state visual evoked potential (SSVEP) is one of the most popular brain-computer interface (BCI) paradigms, with high information transmission rate and signal-to-noise ratio. Many calibration-free and calibration-based approaches have been proposed to improve the performance of SSVEP-based BCIs. This paper considers a quick calibration scenario, where there are plenty of data from multiple source subjects, but only a small number of calibration trials from a subset of stimulus frequencies for the new subject. We propose small data least-squares transformation (sd-LST) to solve this problem. Experiments on three publicly available SSVEP datasets demonstrated that sd-LST outperformed several classical or state-of-the-art approaches, with only about 10 calibration trials for 40-target SSVEP-based BCI spellers.
稳态视觉诱发电位(SSVEP)是最流行的脑机接口(BCI)范式之一,具有高信息传输率和信噪比。已经提出了许多无需校准和基于校准的方法来提高基于SSVEP的BCI的性能。本文考虑了一种快速校准场景,即有来自多个源受试者的大量数据,但新受试者只有来自刺激频率子集的少量校准试验。我们提出了小数据最小二乘变换(sd-LST)来解决这个问题。在三个公开可用的SSVEP数据集上进行的实验表明,sd-LST优于几种经典或最新方法,对于基于40目标SSVEP的BCI拼写器,只需大约10次校准试验。