Suppr超能文献

Divergent Component of Motion Planning and Adaptive Repetitive Control for Wearable Walking Exoskeletons.

作者信息

Huang Pengbo, Li Zhijun, Zhou Mengchu, Kan Zhen

出版信息

IEEE Trans Cybern. 2024 Apr;54(4):2244-2256. doi: 10.1109/TCYB.2022.3222564. Epub 2024 Mar 18.

Abstract

Wearable walking exoskeletons show great potentials in helping patients with neuro musculoskeletal stroke. Key to the successful applications is the design of effective walking trajectories that enable smooth walking for exoskeletons. This work proposes a walking planning method based on the divergent component of motion to obtain a stable joint angle trajectory. Since periodic and nonperiodic disturbances are ubiquitous in the repeating walking motion of an exoskeleton system, a major challenge in the walking control of wearable exoskeleton is the joint angle drift problem, that is, the joint angle motion trajectories are not necessarily periodic due to the presence of disturbance. To address this challenge, this work develops an adaptive repetitive control strategy to guarantee that the motion trajectories of joint angle are repetitive. In particular, by treating the disturbance as system uncertainties, an adaptive controller is designed to compensate for the uncertainties based on an integral-type Lyapunov function. A fully saturated learning approach is then developed to achieve asymptotic tracking of repetitive walking trajectories. Extensive experiments are carried out to demonstrate the effectiveness of the tracking performance.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验