Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Universidad Pablo de Olavide, Sevilla, Spain.
Mol Metab. 2022 Dec;66:101648. doi: 10.1016/j.molmet.2022.101648. Epub 2022 Nov 28.
McArdle disease is caused by myophosphorylase deficiency and results in complete inability for muscle glycogen breakdown. A hallmark of this condition is muscle oxidation impairment (e.g., low peak oxygen uptake (VO)), a phenomenon traditionally attributed to reduced glycolytic flux and Krebs cycle anaplerosis. Here we hypothesized an additional role for muscle mitochondrial network alterations associated with massive intracellular glycogen accumulation.
We analyzed in depth mitochondrial characteristics-content, biogenesis, ultrastructure-and network integrity in skeletal-muscle from McArdle/control mice and two patients. We also determined VO in patients (both sexes, N = 145) and healthy controls (N = 133).
Besides corroborating very poor VO values in patients and impairment in muscle glycolytic flux, we found that, in McArdle muscle: (a) damaged fibers are likely those with a higher mitochondrial and glycogen content, which show major disruption of the three main cytoskeleton components-actin microfilaments, microtubules and intermediate filaments-thereby contributing to mitochondrial network disruption in skeletal muscle fibers; (b) there was an altered subcellular localization of mitochondrial fission/fusion proteins and of the sarcoplasmic reticulum protein calsequestrin-with subsequent alteration in mitochondrial dynamics/function; impairment in mitochondrial content/biogenesis; and (c) several OXPHOS-related complex proteins/activities were also affected.
In McArdle disease, severe muscle oxidative capacity impairment could also be explained by a disruption of the mitochondrial network, at least in those fibers with a higher capacity for glycogen accumulation. Our findings might pave the way for future research addressing the potential involvement of mitochondrial network alterations in the pathophysiology of other glycogenoses.
McArdle 病是由磷酸肌酸酶缺乏引起的,导致肌肉糖原分解完全无能。这种情况的一个标志是肌肉氧化损伤(例如,峰值摄氧量低 (VO)),这一现象传统上归因于糖酵解通量和三羧酸循环补料减少。在这里,我们假设与大量细胞内糖原积累相关的肌肉线粒体网络改变具有额外作用。
我们深入分析了 McArdle/对照小鼠和两名患者骨骼肌中的线粒体特征-含量、生物发生、超微结构和网络完整性。我们还测定了患者(男女,N=145)和健康对照者(N=133)的 VO。
除了证实患者的 VO 值非常低且肌肉糖酵解通量受损外,我们还发现,在 McArdle 肌肉中:(a)受损纤维可能是那些具有更高线粒体和糖原含量的纤维,这些纤维显示出三个主要细胞骨架成分-肌动蛋白微丝、微管和中间丝的主要破坏,从而导致骨骼肌纤维中线粒体网络的破坏;(b)线粒体分裂/融合蛋白和肌浆网蛋白 calsequestrin 的亚细胞定位发生改变-随后改变线粒体动力学/功能;线粒体含量/生物发生受损;(c)几种 OXPHOS 相关复合物蛋白/活性也受到影响。
在 McArdle 病中,严重的肌肉氧化能力受损也可以通过破坏线粒体网络来解释,至少在那些具有更高糖原积累能力的纤维中。我们的发现可能为未来研究开辟道路,以探讨线粒体网络改变在其他糖原症病理生理学中的潜在作用。