Brull Astrid, de Luna Noemí, Blanco-Grau Albert, Lucia Alejandro, Martin Miguel Angel, Arenas Joaquin, Martí Ramon, Andreu Antoni L, Pinós Tomàs
Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain.
J Physiol. 2015 Jun 15;593(12):2693-706. doi: 10.1113/JP270085. Epub 2015 May 18.
This is the first study to analyse the effect of muscle glycogen phosphorylase depletion in metabolically different muscle types. In McArdle mice, muscle glycogen phosphorylase is absent in both oxidative and glycolytic muscles. In McArdle mice, the glycogen debranching enzyme (catabolic) is increased in oxidative muscles, whereas the glycogen branching enzyme (anabolic) is increased in glycolytic muscles. In McArdle mice, total glycogen synthase is decreased in both oxidative and glycolytic muscles, whereas the phosphorylated inactive form of the enzyme is increased in both oxidative and glycolytic enzymes. In McArdle mice, glycogen content is higher in glycolytic muscles than in oxidative muscles. Additionally, in all muscles analysed, the glycogen content is higher in males than in females. The maximal endurance capacity of the McArdle mice is significantly lower compared to heterozygous and wild-type mice.
McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles. Compared with wt/wt, exercise capacity (measured in a treadmill test) was impaired in p.R50X/p.R50X (∼48%) and p.R50X/wt mice (∼18%). p.R50X/p.R50X mice showed an absence of GP-MM in the three muscles. GP-MM was reduced in p.R50X/wt mice, especially in the soleus, suggesting that the function of 'slow-twitch' muscles is less dependent on glycogen catabolism. p.R50X/p.R50X mice showed increased glycogen debranching enzyme in the soleus, increased glycogen branching enzyme in the gastrocnemius and EDL, as well as reduced levels of mucle glycogen synthase protein in the three muscles (mean ∼70%), reflecting a protective mechanism for preventing deleterious glycogen accumulation. Additionally, glycogen content was highest in the EDL of p.R50X/p.R50X mice. Amongst other findings, the present study shows that the expression of the main muscle glycogen regulatory enzymes differs depending on the muscle phenotype (slow- vs. fast-twitch) and that even partial GP-MM deficiency affects maximal endurance capacity. Our knock-in model might help to provide insights into the importance of glycogen on muscle function.
这是第一项分析肌肉糖原磷酸化酶缺失在代谢不同的肌肉类型中所产生影响的研究。在麦卡德尔小鼠中,氧化型和糖酵解型肌肉均缺乏肌肉糖原磷酸化酶。在麦卡德尔小鼠中,氧化型肌肉中的糖原脱支酶(分解代谢酶)增加,而糖酵解型肌肉中的糖原分支酶(合成代谢酶)增加。在麦卡德尔小鼠中,氧化型和糖酵解型肌肉中的总糖原合酶均减少,而该酶的磷酸化无活性形式在氧化型和糖酵解型肌肉中均增加。在麦卡德尔小鼠中,糖酵解型肌肉中的糖原含量高于氧化型肌肉。此外,在所有分析的肌肉中,雄性的糖原含量高于雌性。与杂合子和野生型小鼠相比,麦卡德尔小鼠的最大耐力能力显著降低。
由遗传性肌肉糖原磷酸化酶(GP-MM)缺乏引起的麦卡德尔病,可以说是运动不耐受的典型范例。最近的敲入(p.R50X/p.R50X)小鼠疾病模型能够研究肌肉糖原不可用的表型后果以及运动不耐受的生理病理学。我们分析了2月龄小鼠[野生型(wt/wt)、杂合子(p.R50X/wt)和p.R50X/p.R50X]的最大耐力运动能力,以及主要糖原代谢调节酶(糖原合酶、糖原分支酶和糖原脱支酶)中缺乏GP-MM的分子后果,以及慢肌(比目鱼肌)、中间肌(腓肠肌)和糖酵解/快肌(趾长伸肌;EDL)中的糖原含量。与wt/wt相比,p.R50X/p.R50X(约48%)和p.R50X/wt小鼠(约18%)的运动能力(通过跑步机测试测量)受损。p.R50X/p.R50X小鼠在这三块肌肉中均缺乏GP-MM。p.R50X/wt小鼠的GP-MM减少,尤其是在比目鱼肌中,这表明“慢肌”的功能对糖原分解代谢的依赖性较小。p.R50X/p.R50X小鼠的比目鱼肌中糖原脱支酶增加,腓肠肌和EDL中糖原分支酶增加,并且这三块肌肉中肌肉糖原合酶蛋白水平降低(平均约70%),这反映了一种防止有害糖原积累的保护机制。此外,p.R50X/p.R50X小鼠的EDL中糖原含量最高。在其他发现中,本研究表明主要肌肉糖原调节酶的表达因肌肉表型(慢肌与快肌)而异,并且即使是部分GP-MM缺乏也会影响最大耐力能力。我们的敲入模型可能有助于深入了解糖原对肌肉功能的重要性。