Suppr超能文献

肌磷酸化酶功能障碍的表型后果:来自麦卡德尔小鼠模型的见解。

Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model.

作者信息

Brull Astrid, de Luna Noemí, Blanco-Grau Albert, Lucia Alejandro, Martin Miguel Angel, Arenas Joaquin, Martí Ramon, Andreu Antoni L, Pinós Tomàs

机构信息

Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.

Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain.

出版信息

J Physiol. 2015 Jun 15;593(12):2693-706. doi: 10.1113/JP270085. Epub 2015 May 18.

Abstract

KEY POINTS

This is the first study to analyse the effect of muscle glycogen phosphorylase depletion in metabolically different muscle types. In McArdle mice, muscle glycogen phosphorylase is absent in both oxidative and glycolytic muscles. In McArdle mice, the glycogen debranching enzyme (catabolic) is increased in oxidative muscles, whereas the glycogen branching enzyme (anabolic) is increased in glycolytic muscles. In McArdle mice, total glycogen synthase is decreased in both oxidative and glycolytic muscles, whereas the phosphorylated inactive form of the enzyme is increased in both oxidative and glycolytic enzymes. In McArdle mice, glycogen content is higher in glycolytic muscles than in oxidative muscles. Additionally, in all muscles analysed, the glycogen content is higher in males than in females. The maximal endurance capacity of the McArdle mice is significantly lower compared to heterozygous and wild-type mice.

ABSTRACT

McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles. Compared with wt/wt, exercise capacity (measured in a treadmill test) was impaired in p.R50X/p.R50X (∼48%) and p.R50X/wt mice (∼18%). p.R50X/p.R50X mice showed an absence of GP-MM in the three muscles. GP-MM was reduced in p.R50X/wt mice, especially in the soleus, suggesting that the function of 'slow-twitch' muscles is less dependent on glycogen catabolism. p.R50X/p.R50X mice showed increased glycogen debranching enzyme in the soleus, increased glycogen branching enzyme in the gastrocnemius and EDL, as well as reduced levels of mucle glycogen synthase protein in the three muscles (mean ∼70%), reflecting a protective mechanism for preventing deleterious glycogen accumulation. Additionally, glycogen content was highest in the EDL of p.R50X/p.R50X mice. Amongst other findings, the present study shows that the expression of the main muscle glycogen regulatory enzymes differs depending on the muscle phenotype (slow- vs. fast-twitch) and that even partial GP-MM deficiency affects maximal endurance capacity. Our knock-in model might help to provide insights into the importance of glycogen on muscle function.

摘要

关键点

这是第一项分析肌肉糖原磷酸化酶缺失在代谢不同的肌肉类型中所产生影响的研究。在麦卡德尔小鼠中,氧化型和糖酵解型肌肉均缺乏肌肉糖原磷酸化酶。在麦卡德尔小鼠中,氧化型肌肉中的糖原脱支酶(分解代谢酶)增加,而糖酵解型肌肉中的糖原分支酶(合成代谢酶)增加。在麦卡德尔小鼠中,氧化型和糖酵解型肌肉中的总糖原合酶均减少,而该酶的磷酸化无活性形式在氧化型和糖酵解型肌肉中均增加。在麦卡德尔小鼠中,糖酵解型肌肉中的糖原含量高于氧化型肌肉。此外,在所有分析的肌肉中,雄性的糖原含量高于雌性。与杂合子和野生型小鼠相比,麦卡德尔小鼠的最大耐力能力显著降低。

摘要

由遗传性肌肉糖原磷酸化酶(GP-MM)缺乏引起的麦卡德尔病,可以说是运动不耐受的典型范例。最近的敲入(p.R50X/p.R50X)小鼠疾病模型能够研究肌肉糖原不可用的表型后果以及运动不耐受的生理病理学。我们分析了2月龄小鼠[野生型(wt/wt)、杂合子(p.R50X/wt)和p.R50X/p.R50X]的最大耐力运动能力,以及主要糖原代谢调节酶(糖原合酶、糖原分支酶和糖原脱支酶)中缺乏GP-MM的分子后果,以及慢肌(比目鱼肌)、中间肌(腓肠肌)和糖酵解/快肌(趾长伸肌;EDL)中的糖原含量。与wt/wt相比,p.R50X/p.R50X(约48%)和p.R50X/wt小鼠(约18%)的运动能力(通过跑步机测试测量)受损。p.R50X/p.R50X小鼠在这三块肌肉中均缺乏GP-MM。p.R50X/wt小鼠的GP-MM减少,尤其是在比目鱼肌中,这表明“慢肌”的功能对糖原分解代谢的依赖性较小。p.R50X/p.R50X小鼠的比目鱼肌中糖原脱支酶增加,腓肠肌和EDL中糖原分支酶增加,并且这三块肌肉中肌肉糖原合酶蛋白水平降低(平均约70%),这反映了一种防止有害糖原积累的保护机制。此外,p.R50X/p.R50X小鼠的EDL中糖原含量最高。在其他发现中,本研究表明主要肌肉糖原调节酶的表达因肌肉表型(慢肌与快肌)而异,并且即使是部分GP-MM缺乏也会影响最大耐力能力。我们的敲入模型可能有助于深入了解糖原对肌肉功能的重要性。

相似文献

1
Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model.
J Physiol. 2015 Jun 15;593(12):2693-706. doi: 10.1113/JP270085. Epub 2015 May 18.
2
Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease.
Brain. 2012 Jul;135(Pt 7):2048-57. doi: 10.1093/brain/aws141. Epub 2012 Jun 21.
3
Muscle Signaling in Exercise Intolerance: Insights from the McArdle Mouse Model.
Med Sci Sports Exerc. 2016 Aug;48(8):1448-58. doi: 10.1249/MSS.0000000000000931.
5
Exercising with blocked muscle glycogenolysis: Adaptation in the McArdle mouse.
Mol Genet Metab. 2018 Jan;123(1):21-27. doi: 10.1016/j.ymgme.2017.11.006. Epub 2017 Nov 21.
7
Differential glucose metabolism in mice and humans affected by McArdle disease.
Am J Physiol Regul Integr Comp Physiol. 2016 Aug 1;311(2):R307-14. doi: 10.1152/ajpregu.00489.2015. Epub 2016 Jun 8.
8
Differential Muscle Involvement in Mice and Humans Affected by McArdle Disease.
J Neuropathol Exp Neurol. 2016 May;75(5):441-54. doi: 10.1093/jnen/nlw018. Epub 2016 Mar 30.
9
Genes and exercise intolerance: insights from McArdle disease.
Physiol Genomics. 2016 Feb;48(2):93-100. doi: 10.1152/physiolgenomics.00076.2015. Epub 2015 Oct 13.
10
Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease.
Brain. 2009 Jun;132(Pt 6):1545-52. doi: 10.1093/brain/awp065. Epub 2009 May 11.

引用本文的文献

1
Aerobic capacity and muscle proteome: Insights from a mouse model.
Exp Physiol. 2025 Feb;110(2):293-306. doi: 10.1113/EP092308. Epub 2024 Nov 21.
2
Gene therapy for glycogen storage diseases.
J Inherit Metab Dis. 2024 Jan;47(1):93-118. doi: 10.1002/jimd.12654. Epub 2023 Jul 27.
3
Low aerobic capacity in McArdle disease: A role for mitochondrial network impairment?
Mol Metab. 2022 Dec;66:101648. doi: 10.1016/j.molmet.2022.101648. Epub 2022 Nov 28.
4
Muscle glycogen unavailability and fat oxidation rate during exercise: Insights from McArdle disease.
J Physiol. 2023 Feb;601(3):551-566. doi: 10.1113/JP283743. Epub 2022 Nov 29.
5
Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies.
Genes (Basel). 2021 Dec 28;13(1):74. doi: 10.3390/genes13010074.
6
Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models.
Int J Mol Sci. 2020 Dec 17;21(24):9621. doi: 10.3390/ijms21249621.
7
McArdle Disease: Clinical, Biochemical, Histological and Molecular Genetic Analysis of 60 Patients.
Biomedicines. 2020 Feb 15;8(2):33. doi: 10.3390/biomedicines8020033.
8
McArdle Disease: New Insights into Its Underlying Molecular Mechanisms.
Int J Mol Sci. 2019 Nov 25;20(23):5919. doi: 10.3390/ijms20235919.
9
Low survival rate and muscle fiber-dependent aging effects in the McArdle disease mouse model.
Sci Rep. 2019 Mar 26;9(1):5116. doi: 10.1038/s41598-019-41414-8.

本文引用的文献

1
McArdle disease does not affect skeletal muscle fibre type profiles in humans.
Biol Open. 2014 Nov 28;3(12):1224-7. doi: 10.1242/bio.20149548.
2
McArdle disease: a unique study model in sports medicine.
Sports Med. 2014 Nov;44(11):1531-44. doi: 10.1007/s40279-014-0223-5.
3
Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.
Physiol Behav. 2014 Jun 10;132:1-9. doi: 10.1016/j.physbeh.2014.03.033. Epub 2014 May 5.
5
Exercise benefits in chronic graft versus host disease: a murine model study.
Med Sci Sports Exerc. 2013 Sep;45(9):1703-11. doi: 10.1249/MSS.0b013e31828fa004.
6
Oxidative stress and Nrf2 signaling in McArdle disease.
Mol Genet Metab. 2013 Nov;110(3):297-302. doi: 10.1016/j.ymgme.2013.06.022. Epub 2013 Jul 6.
7
Muscle glycogen stores and fatigue.
J Physiol. 2013 Sep 15;591(18):4405-13. doi: 10.1113/jphysiol.2013.251629. Epub 2013 May 7.
8
Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.
Am J Physiol Cell Physiol. 2012 Dec 1;303(11):C1146-55. doi: 10.1152/ajpcell.00252.2012. Epub 2012 Sep 26.
9
Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease.
Brain. 2012 Jul;135(Pt 7):2048-57. doi: 10.1093/brain/aws141. Epub 2012 Jun 21.
10
A transcriptomic approach to search for novel phenotypic regulators in McArdle disease.
PLoS One. 2012;7(2):e31718. doi: 10.1371/journal.pone.0031718. Epub 2012 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验