Suppr超能文献

用于自旋轨道耦合的电流密度泛函框架

Current density functional framework for spin-orbit coupling.

作者信息

Holzer Christof, Franzke Yannick J, Pausch Ansgar

机构信息

Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.

出版信息

J Chem Phys. 2022 Nov 28;157(20):204102. doi: 10.1063/5.0122394.

Abstract

Relativistic two-component density functional calculations are carried out in a non-collinear formalism to describe spin-orbit interactions, where the exchange-correlation functional is constructed as a generalization of the non-relativistic density functional approximation. Contrary to non-relativistic density functional theory (DFT), spin-orbit coupling, however, leads to a non-vanishing paramagnetic current density. Density functionals depending on the kinetic energy density, such as meta-generalized gradient approximations, should therefore be constructed in the framework of current DFT (CDFT). The latter has previously exclusively been used in the regime of strong magnetic fields. Herein, we present a consistent CDFT approach for relativistic DFT, including spin-orbit coupling. Furthermore, we assess the importance of the current density terms for ground-state energies, excitation energies, nuclear magnetic resonance shielding, and spin-spin coupling constants, as well as hyperfine coupling constants, Δg-shifts, and the nuclear quadrupole interaction tensor in electron paramagnetic resonance (EPR) spectroscopy. The most notable changes are found for EPR properties. The impact of the current-dependent terms rises with the number of unpaired electrons, and consequently, the EPR properties are more sensitive toward CDFT. Considerable changes are observed for the strongly constrained and appropriately normed functionals, as well as the B97M family and TASK. The current density terms are less important when exact exchange is incorporated. At the same time, the current-dependent kernel ensures the stability of response calculations in all cases. We, therefore, strongly recommend to use the framework of CDFT for self-consistent spin-orbit calculations.

摘要

采用非共线形式进行相对论双分量密度泛函计算,以描述自旋 - 轨道相互作用,其中交换 - 相关泛函被构建为非相对论密度泛函近似的推广。与非相对论密度泛函理论(DFT)相反,然而自旋 - 轨道耦合会导致非零的顺磁电流密度。因此,依赖于动能密度的密度泛函,如元广义梯度近似,应在当前密度泛函理论(CDFT)的框架内构建。后者此前仅在强磁场 regime 中使用。在此,我们提出一种用于相对论DFT的一致CDFT方法,包括自旋 - 轨道耦合。此外,我们评估了电流密度项对基态能量、激发能、核磁共振屏蔽、自旋 - 自旋耦合常数以及电子顺磁共振(EPR)光谱中的超精细耦合常数、Δg位移和核四极相互作用张量的重要性。在EPR性质方面发现了最显著的变化。与电流相关项的影响随着未成对电子数量的增加而增加,因此,EPR性质对CDFT更敏感。对于强约束且适当归一化的泛函以及B97M族和TASK,观察到了相当大的变化。当纳入精确交换时,电流密度项的重要性较低。同时,与电流相关的核确保了在所有情况下响应计算的稳定性。因此,我们强烈建议在自洽自旋 - 轨道计算中使用CDFT框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验