Molsoft L.L.C., 11199 Sorrento Valley Road, S209, San Diego, California92121, United States.
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California92093, United States.
J Chem Inf Model. 2022 Dec 12;62(23):5896-5906. doi: 10.1021/acs.jcim.2c00790. Epub 2022 Dec 1.
We present a graph-convolutional neural network (GCNN)-based method for learning and prediction of statistical torsional profiles (STP) in small organic molecules based on the experimental X-ray structure data. A specialized GCNN torsion profile model is trained using the structures in the Crystallography Open Database (COD). The GCNN-STP model captures torsional preferences over a wide range of torsion rotor chemotypes and correctly predicts a variety of effects from the vicinal atoms and moieties. GCNN-STP statistical profiles also show good agreement with quantum chemically (DFT) calculated torsion energy profiles. Furthermore, we demonstrate the application of the GCNN-STP statistical profiles for conformer generation. A web server that allows interactive profile prediction and viewing is made freely available at https://www.molsoft.com/tortool.html.
我们提出了一种基于图卷积神经网络(GCNN)的方法,用于从小分子的实验 X 射线结构数据中学习和预测统计扭转构象(STP)。使用 Crystallography Open Database(COD)中的结构来训练专门的 GCNN 扭转构象模型。GCNN-STP 模型可以捕捉到广泛的扭转转子化学型的扭转偏好,并正确预测来自相邻原子和部分的各种效应。GCNN-STP 统计构象还与量子化学(DFT)计算的扭转能构象很好地吻合。此外,我们还展示了 GCNN-STP 统计构象在构象生成中的应用。一个允许交互式构象预测和查看的网络服务器可在 https://www.molsoft.com/tortool.html 上免费获得。