Suppr超能文献

小分子统计扭曲构象的图卷积神经网络模型。

Graph-Convolutional Neural Net Model of the Statistical Torsion Profiles for Small Organic Molecules.

机构信息

Molsoft L.L.C., 11199 Sorrento Valley Road, S209, San Diego, California92121, United States.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California92093, United States.

出版信息

J Chem Inf Model. 2022 Dec 12;62(23):5896-5906. doi: 10.1021/acs.jcim.2c00790. Epub 2022 Dec 1.

Abstract

We present a graph-convolutional neural network (GCNN)-based method for learning and prediction of statistical torsional profiles (STP) in small organic molecules based on the experimental X-ray structure data. A specialized GCNN torsion profile model is trained using the structures in the Crystallography Open Database (COD). The GCNN-STP model captures torsional preferences over a wide range of torsion rotor chemotypes and correctly predicts a variety of effects from the vicinal atoms and moieties. GCNN-STP statistical profiles also show good agreement with quantum chemically (DFT) calculated torsion energy profiles. Furthermore, we demonstrate the application of the GCNN-STP statistical profiles for conformer generation. A web server that allows interactive profile prediction and viewing is made freely available at https://www.molsoft.com/tortool.html.

摘要

我们提出了一种基于图卷积神经网络(GCNN)的方法,用于从小分子的实验 X 射线结构数据中学习和预测统计扭转构象(STP)。使用 Crystallography Open Database(COD)中的结构来训练专门的 GCNN 扭转构象模型。GCNN-STP 模型可以捕捉到广泛的扭转转子化学型的扭转偏好,并正确预测来自相邻原子和部分的各种效应。GCNN-STP 统计构象还与量子化学(DFT)计算的扭转能构象很好地吻合。此外,我们还展示了 GCNN-STP 统计构象在构象生成中的应用。一个允许交互式构象预测和查看的网络服务器可在 https://www.molsoft.com/tortool.html 上免费获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验