Suppr超能文献

黏着连接形成大小选择性蛋白水解热点,对 Notch 信号通路至关重要。

Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling.

机构信息

Department of Otolaryngology, University of California, San Francisco, CA, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.

出版信息

Nat Cell Biol. 2022 Dec;24(12):1739-1753. doi: 10.1038/s41556-022-01031-6. Epub 2022 Dec 1.

Abstract

Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand-receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme-substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.

摘要

黏着连接(AJs)在细胞界面处形成空间、化学和机械上离散的微区。在这里,我们使用一种机械基因平台,该平台可以通过控制蛋白质定位、聚集和机械加载来人工生成 AJ,发现 AJ 还可以组织具有空间调节的底物选择性的 γ-分泌酶的蛋白水解热点,这对于 Notch 和其他跨膜蛋白的加工至关重要。AJ 之外的膜微区专门组织 Notch 配体-受体结合(LRE 微区)以启动受体激活。相反,AJ 内的膜微区专门用于协调调节的膜内蛋白水解(RIP 微区)。它们通过浓缩 γ-分泌酶和激活的受体,同时排除全长 Notch 来实现这一点。AJ 通过依赖脂质的 γ-分泌酶募集和尺寸依赖性的蛋白质分离来诱导这些具有不同功能的微区。通过将全长 Notch 排除在 RIP 微区之外,AJ 可以防止不合适的酶-底物相互作用并抑制虚假的 Notch 激活。配体诱导的胞外结构域脱落消除了尺寸依赖性的分离,从而释放 Notch 以转位到 AJ 中,由 γ-分泌酶进行加工。这种机制指导体内室带-神经祖细胞的径向分化,并更广泛地调节其他大的细胞表面受体(如淀粉样前体蛋白)的蛋白水解。这些发现表明 AJ 在创建大小选择性空间开关方面具有前所未有的作用,这些开关协调了多种跨膜蛋白的 γ-分泌酶加工,这些蛋白调节发育、稳态和疾病。

相似文献

4
gamma-Secretase: a multifaceted regulator of angiogenesis.γ-分泌酶:血管生成的多面调节因子。
J Cell Mol Med. 2008 Jun;12(3):781-95. doi: 10.1111/j.1582-4934.2008.00274.x. Epub 2008 Feb 8.
8
S-palmitoylation of gamma-secretase subunits nicastrin and APH-1.γ-分泌酶亚基尼卡斯特林和APH-1的S-棕榈酰化作用
J Biol Chem. 2009 Jan 16;284(3):1373-84. doi: 10.1074/jbc.M806380200. Epub 2008 Nov 20.

引用本文的文献

4
A magnetically powered nanomachine with a DNA clutch.带 DNA 离合器的磁力驱动纳米机器。
Nat Nanotechnol. 2024 May;19(5):646-651. doi: 10.1038/s41565-023-01599-6. Epub 2024 Feb 7.
6
Adherens junctions as molecular regulators of emergent tissue mechanics.黏着连接作为新兴组织力学的分子调控者。
Nat Rev Mol Cell Biol. 2024 Apr;25(4):252-269. doi: 10.1038/s41580-023-00688-7. Epub 2023 Dec 13.
8
The blood-brain barrier: structure, regulation, and drug delivery.血脑屏障:结构、调控与药物递送。
Signal Transduct Target Ther. 2023 May 25;8(1):217. doi: 10.1038/s41392-023-01481-w.

本文引用的文献

3
Cell-cell interfaces as specialized compartments directing cell function.细胞-细胞界面作为专门的隔室指导细胞功能。
Nat Rev Mol Cell Biol. 2020 Dec;21(12):750-764. doi: 10.1038/s41580-020-00298-7. Epub 2020 Oct 22.
6
Notch Mediates Inter-tissue Communication to Promote Tumorigenesis.Notch 介导组织间通讯以促进肿瘤发生。
Curr Biol. 2020 May 18;30(10):1809-1820.e4. doi: 10.1016/j.cub.2020.02.088. Epub 2020 Apr 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验