Suppr超能文献

有效减少抑郁发作的睡眠干预(STRIDE):一项比较失眠的阶梯式认知行为疗法与睡眠健康教育对照以预防重度抑郁症的随机对照试验的研究方案。

Sleep to Reduce Incident Depression Effectively (STRIDE): study protocol for a randomized controlled trial comparing stepped-care cognitive-behavioral therapy for insomnia versus sleep education control to prevent major depression.

机构信息

Thomas Roth Sleep Disorders & Research Center, Henry Ford Health, Detroit, MI, 48202, USA.

Center for Health Policy & Health Services Research, Henry Ford Health, Detroit, MI, 48202, USA.

出版信息

Trials. 2022 Dec 1;23(1):967. doi: 10.1186/s13063-022-06850-4.

Abstract

BACKGROUND

Prevention of major depressive disorder (MDD) is a public health priority. Strategies targeting individuals at elevated risk for MDD may guide effective preventive care. Insomnia is a reliable precursor to depression, preceding half of all incident and relapse cases. Thus, insomnia may serve as a useful entry point for preventing MDD. Cognitive-behavioral therapy for insomnia (CBT-I) is recommended as the first-line treatment for insomnia, but widespread implementation is limited by a shortage of trained specialists. Innovative stepped-care approaches rooted in primary care can increase access to CBT-I and reduce rates of MDD.

METHODS/DESIGN: We propose a large-scale stepped-care clinical trial in the primary care setting that utilizes a sequential, multiple assignment, randomized trial (SMART) design to determine the effectiveness of dCBT-I alone and in combination with clinician-led CBT-I for insomnia and the prevention of MDD incidence and relapse. Specifically, our care model uses digital CBT-I (dCBT-I) as a first-line intervention to increase care access and reduce the need for specialist resources. Our proposal also adds clinician-led CBT-I for patients who do not remit with first-line intervention and need a more personalized approach from specialty care. We will evaluate negative repetitive thinking as a potential treatment mechanism by which dCBT-I and CBT-I benefit insomnia and depression outcomes.

DISCUSSION

This project will test a highly scalable model of sleep care in a large primary care system to determine the potential for wide dissemination and implementation to address the high volume of population need for safe and effective insomnia treatment and associated prevention of depression.

TRIAL REGISTRATION

ClinicalTrials.gov NCT03322774. Registered on October 26, 2017.

摘要

背景

预防重度抑郁症(MDD)是公共卫生的重点。针对有 MDD 风险升高的个体的策略可能指导有效的预防保健。失眠是抑郁的可靠前兆,超过一半的新发和复发病例都由此引发。因此,失眠可能是预防 MDD 的一个有用切入点。失眠的认知行为疗法(CBT-I)被推荐为失眠的一线治疗方法,但由于缺乏训练有素的专家,其广泛实施受到限制。以初级保健为基础的创新分级护理方法可以增加获得 CBT-I 的机会,并降低 MDD 的发生率。

方法/设计:我们提出了一项在初级保健环境中进行的大规模分级护理临床试验,采用顺序、多重分配、随机试验(SMART)设计,以确定单独使用和结合临床医生主导的 CBT-I 治疗失眠和预防 MDD 发病和复发的效果。具体来说,我们的护理模式使用数字认知行为疗法(dCBT-I)作为一线干预措施,以增加护理机会,并减少对专科资源的需求。我们的建议还增加了临床医生主导的 CBT-I,用于那些一线干预措施无效、需要从专科护理获得更个性化治疗的患者。我们将评估消极重复思维作为 dCBT-I 和 CBT-I 对失眠和抑郁结果有益的潜在治疗机制。

讨论

本项目将在大型初级保健系统中测试一种高度可扩展的睡眠护理模式,以确定广泛传播和实施的潜力,以满足大量人群对安全有效的失眠治疗和相关抑郁预防的需求。

试验注册

ClinicalTrials.gov NCT03322774。注册于 2017 年 10 月 26 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9714233/6b4a5da7e391/13063_2022_6850_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验