Oyewola David Opeoluwa, Dada Emmanuel Gbenga, Ndunagu Juliana Ngozi
Department of Mathematics and Statistics, Federal Univerisity Kashere, Gombe, Nigeria.
Department of Mathematical Sciences, Faculty of Science, University of Maiduguri, Nigeria.
Heliyon. 2022 Nov 23;8(11):e11862. doi: 10.1016/j.heliyon.2022.e11862. eCollection 2022 Nov.
Cryptocurrency is an advanced digital currency that is secured by encryption, making it nearly impossible to forge or duplicate. Many cryptocurrencies are blockchain-based with decentralized networks. The prediction of cryptocurrency prices is a very difficult task because of the absence of an appropriate analytical basis to substantiate their claims. Cryptocurrencies are also dependent on several variables, such as technical advancement, internal competition, market pressure, economic concerns, security, and political considerations. This paper proposed the hybrid walk-forward ensemble optimization technique and applied it to predict the daily prices of fifteen cryptocurrencies, such as Cardano (ADA-USD), Bitcoin (BTC-USD), Dogecoin (DOGE-USD), Ethereum Classic (ETC-USD), Chainlink (LINK-USD), Litecoin (LTC-USD), NEO (NEO-USD), Tron (TRX-USD), Tether (USDT-USD), NEM (XEM-USD), Stellar (XLM-USD), Ripple (XRP-USD), and Tezos (XTZ-USD). A performance comparison of these cryptocurrencies was done using classical statistical models, machine learning algorithms, and deep learning algorithms on different cryptocurrency time series. Simulation results show that our proposed model performed better in terms of cryptocurrency prediction accuracy compared to the classical statistical model and machine and deep learning algorithms used in this paper.
加密货币是一种先进的数字货币,通过加密技术进行安全保护,几乎不可能被伪造或复制。许多加密货币基于区块链且网络去中心化。由于缺乏合适的分析基础来证实其价值主张,预测加密货币价格是一项非常困难的任务。加密货币还依赖于多个变量,如技术进步、内部竞争、市场压力、经济因素、安全性和政治考量。本文提出了混合向前走步集成优化技术,并将其应用于预测十五种加密货币的每日价格,如卡尔达诺(ADA - USD)、比特币(BTC - USD)、狗狗币(DOGE - USD)、以太坊经典(ETC - USD)、Chainlink(LINK - USD)、莱特币(LTC - USD)、小蚁(NEO - USD)、波场(TRX - USD)、泰达币(USDT - USD)、新经币(XEM - USD)、恒星币(XLM - USD)、瑞波币(XRP - USD)和 Tezos(XTZ - USD)。在不同的加密货币时间序列上,使用经典统计模型、机器学习算法和深度学习算法对这些加密货币进行了性能比较。仿真结果表明,与本文中使用的经典统计模型以及机器学习和深度学习算法相比,我们提出的模型在加密货币预测准确性方面表现更好。