Suppr超能文献

NLM-Chem-BC7:用于生物医学文章中化学实体注释和索引的人工标注全文资源。

NLM-Chem-BC7: manually annotated full-text resources for chemical entity annotation and indexing in biomedical articles.

机构信息

National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.

出版信息

Database (Oxford). 2022 Dec 1;2022. doi: 10.1093/database/baac102.

Abstract

The automatic recognition of chemical names and their corresponding database identifiers in biomedical text is an important first step for many downstream text-mining applications. The task is even more challenging when considering the identification of these entities in the article's full text and, furthermore, the identification of candidate substances for that article's metadata [Medical Subject Heading (MeSH) article indexing]. The National Library of Medicine (NLM)-Chem track at BioCreative VII aimed to foster the development of algorithms that can predict with high quality the chemical entities in the biomedical literature and further identify the chemical substances that are candidates for article indexing. As a result of this challenge, the NLM-Chem track produced two comprehensive, manually curated corpora annotated with chemical entities and indexed with chemical substances: the chemical identification corpus and the chemical indexing corpus. The NLM-Chem BioCreative VII (NLM-Chem-BC7) Chemical Identification corpus consists of 204 full-text PubMed Central (PMC) articles, fully annotated for chemical entities by 12 NLM indexers for both span (i.e. named entity recognition) and normalization (i.e. entity linking) using MeSH. This resource was used for the training and testing of the Chemical Identification task to evaluate the accuracy of algorithms in predicting chemicals mentioned in recently published full-text articles. The NLM-Chem-BC7 Chemical Indexing corpus consists of 1333 recently published PMC articles, equipped with chemical substance indexing by manual experts at the NLM. This resource was used for the evaluation of the Chemical Indexing task, which evaluated the accuracy of algorithms in predicting the chemicals that should be indexed, i.e. appear in the listing of MeSH terms for the document. This set was further enriched after the challenge in two ways: (i) 11 NLM indexers manually verified each of the candidate terms appearing in the prediction results of the challenge participants, but not in the MeSH indexing, and the chemical indexing terms appearing in the MeSH indexing list, but not in the prediction results, and (ii) the challenge organizers algorithmically merged the chemical entity annotations in the full text for all predicted chemical entities and used a statistical approach to keep those with the highest degree of confidence. As a result, the NLM-Chem-BC7 Chemical Indexing corpus is a gold-standard corpus for chemical indexing of journal articles and a silver-standard corpus for chemical entity identification in full-text journal articles. Together, these resources are currently the most comprehensive resources for chemical entity recognition, and we demonstrate improvements in the chemical entity recognition algorithms. We detail the characteristics of these novel resources and make them available for the community. Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/NLM-Chem-BC7-corpus/.

摘要

生物医学文本中化学名称及其相应数据库标识符的自动识别是许多下游文本挖掘应用的重要第一步。当考虑在文章全文中识别这些实体,并且进一步识别该文章元数据[医学主题词(MeSH)文章索引]的候选物质时,任务变得更加具有挑战性。第七届生物创意挑战赛(BioCreative VII)的国家医学图书馆(NLM)-Chem 轨道旨在促进开发能够高质量预测生物医学文献中化学实体的算法,并进一步识别可用于文章索引的化学物质候选物。作为这项挑战的结果,NLM-Chem 轨道生成了两个综合的、手动注释的化学实体和用化学物质索引的数据集:化学识别语料库和化学索引语料库。NLM-Chem BioCreative VII(NLM-Chem-BC7)化学识别语料库由 204 篇全文 PubMed Central(PMC)文章组成,12 名 NLM 索引员使用 MeSH 对化学实体进行了全面注释,包括跨度(即命名实体识别)和标准化(即实体链接)。该资源用于化学识别任务的培训和测试,以评估算法在预测最近发表的全文文章中提到的化学物质方面的准确性。NLM-Chem-BC7 化学索引语料库由 1333 篇最近发表的 PMC 文章组成,由 NLM 的手动专家配备化学物质索引。该资源用于评估化学索引任务的准确性,该任务评估了算法在预测应索引的化学物质方面的准确性,即出现在文档 MeSH 术语列表中的化学物质。在挑战之后,该数据集以两种方式进一步丰富:(i)11 名 NLM 索引员手动验证了挑战参与者预测结果中出现的每个候选术语,但未出现在 MeSH 索引中,以及 MeSH 索引列表中出现的化学索引术语,但未出现在预测结果中,(ii)挑战组织者算法合并了所有预测化学实体的全文中的化学实体注释,并使用统计方法保留了置信度最高的实体。结果,NLM-Chem-BC7 化学索引语料库是期刊文章化学索引的黄金标准语料库,也是全文期刊文章中化学实体识别的白银标准语料库。这些资源共同构成了目前最全面的化学实体识别资源,并且我们展示了化学实体识别算法的改进。我们详细介绍了这些新资源的特点,并将其提供给社区。数据库 URL:https://ftp.ncbi.nlm.nih.gov/pub/lu/NLM-Chem-BC7-corpus/。

相似文献

10
MeSH indexing based on automatically generated summaries.基于自动生成的摘要进行 MeSH 标引。
BMC Bioinformatics. 2013 Jun 26;14:208. doi: 10.1186/1471-2105-14-208.

本文引用的文献

3
TeamTat: a collaborative text annotation tool.TeamTat:一个协作文本注释工具。
Nucleic Acids Res. 2020 Jul 2;48(W1):W5-W11. doi: 10.1093/nar/gkaa333.
7
Information Retrieval and Text Mining Technologies for Chemistry.化学信息检索与文本挖掘技术。
Chem Rev. 2017 Jun 28;117(12):7673-7761. doi: 10.1021/acs.chemrev.6b00851. Epub 2017 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验