文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于小波变换和AlexNet的肺癌组织病理学图像分类

Lung cancer histopathological image classification using wavelets and AlexNet.

作者信息

Sethy Prabira Kumar, Geetha Devi A, Padhan Bikash, Behera Santi Kumari, Sreedhar Surampudi, Das Kalyan

机构信息

Department of Electronics, Sambalpur University, Jyoti Vihar, Burla, India.

Department of Electronics and Communication Engineering, PVP Siddhartha Institute of Technology, Vijayawada, AP, India.

出版信息

J Xray Sci Technol. 2023;31(1):211-221. doi: 10.3233/XST-221301.


DOI:10.3233/XST-221301
PMID:36463485
Abstract

Among malignant tumors, lung cancer has the highest morbidity and fatality rates worldwide. Screening for lung cancer has been investigated for decades in order to reduce mortality rates of lung cancer patients, and treatment options have improved dramatically in recent years. Pathologists utilize various techniques to determine the stage, type, and subtype of lung cancers, but one of the most common is a visual assessment of histopathology slides. The most common subtypes of lung cancer are adenocarcinoma and squamous cell carcinoma, lung benign, and distinguishing between them requires visual inspection by a skilled pathologist. The purpose of this article was to develop a hybrid network for the categorization of lung histopathology images, and it did so by combining AlexNet, wavelet, and support vector machines. In this study, we feed the integrated discrete wavelet transform (DWT) coefficients and AlexNet deep features into linear support vector machines (SVMs) for lung nodule sample classification. The LC25000 Lung and colon histopathology image dataset, which contains 5,000 digital histopathology images in three categories of benign (normal cells), adenocarcinoma, and squamous carcinoma cells (both are cancerous cells) is used in this study to train and test SVM classifiers. The study results of using a 10-fold cross-validation method achieve an accuracy of 99.3% and an area under the curve (AUC) of 0.99 in classifying these digital histopathology images of lung nodule samples.

摘要

在恶性肿瘤中,肺癌在全球范围内的发病率和死亡率最高。为了降低肺癌患者的死亡率,肺癌筛查已经研究了数十年,并且近年来治疗方案有了显著改善。病理学家利用各种技术来确定肺癌的分期、类型和亚型,但最常用的方法之一是对组织病理学切片进行视觉评估。肺癌最常见的亚型是腺癌和鳞状细胞癌,以及肺部良性病变,区分它们需要熟练的病理学家进行目视检查。本文的目的是开发一种用于肺组织病理学图像分类的混合网络,具体做法是将AlexNet、小波和支持向量机相结合。在本研究中,我们将集成离散小波变换(DWT)系数和AlexNet深度特征输入到线性支持向量机(SVM)中,用于肺结节样本分类。本研究使用了LC25000肺和结肠组织病理学图像数据集,该数据集包含5000张数字组织病理学图像,分为良性(正常细胞)、腺癌和鳞状癌细胞(均为癌细胞)三类,用于训练和测试SVM分类器。使用10折交叉验证方法的研究结果在对这些肺结节样本的数字组织病理学图像进行分类时,准确率达到99.3%,曲线下面积(AUC)为0.99。

相似文献

[1]
Lung cancer histopathological image classification using wavelets and AlexNet.

J Xray Sci Technol. 2023

[2]
A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks.

Sensors (Basel). 2019-4-28

[3]
Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.

Phys Med Biol. 2021-3-4

[4]
Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT.

Med Phys. 2015-4

[5]
Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules.

Phys Med Biol. 2018-2-5

[6]
Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features.

Med Phys. 2009-7

[7]
A bilinear convolutional neural network for lung nodules classification on CT images.

Int J Comput Assist Radiol Surg. 2021-1

[8]
Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning.

J Thorac Cardiovasc Surg. 2022-4

[9]
Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set.

Comput Methods Programs Biomed. 2013-5-31

[10]
Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study.

Med Phys. 2018-11-8

引用本文的文献

[1]
SLCCC-Net: Hybrid steganography and AI system for secure cancer classification from histopathological images in internet of medical things applications.

MethodsX. 2025-5-27

[2]
A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer.

Indian J Surg Oncol. 2025-2

[3]
Deep learning ensemble approach with explainable AI for lung and colon cancer classification using advanced hyperparameter tuning.

BMC Med Inform Decis Mak. 2024-8-7

[4]
Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures.

Heliyon. 2024-5-3

[5]
SNSVM: SqueezeNet-Guided SVM for Breast Cancer Diagnosis.

Comput Mater Contin. 2023-8-30

[6]
Cervical Transformation Zone Segmentation and Classification based on Improved Inception-ResNet-V2 Using Colposcopy Images.

Cancer Inform. 2023-3-29

[7]
See Lung Cancer with an AI.

Cancers (Basel). 2023-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索