Sethy Prabira Kumar, Geetha Devi A, Padhan Bikash, Behera Santi Kumari, Sreedhar Surampudi, Das Kalyan
Department of Electronics, Sambalpur University, Jyoti Vihar, Burla, India.
Department of Electronics and Communication Engineering, PVP Siddhartha Institute of Technology, Vijayawada, AP, India.
J Xray Sci Technol. 2023;31(1):211-221. doi: 10.3233/XST-221301.
Among malignant tumors, lung cancer has the highest morbidity and fatality rates worldwide. Screening for lung cancer has been investigated for decades in order to reduce mortality rates of lung cancer patients, and treatment options have improved dramatically in recent years. Pathologists utilize various techniques to determine the stage, type, and subtype of lung cancers, but one of the most common is a visual assessment of histopathology slides. The most common subtypes of lung cancer are adenocarcinoma and squamous cell carcinoma, lung benign, and distinguishing between them requires visual inspection by a skilled pathologist. The purpose of this article was to develop a hybrid network for the categorization of lung histopathology images, and it did so by combining AlexNet, wavelet, and support vector machines. In this study, we feed the integrated discrete wavelet transform (DWT) coefficients and AlexNet deep features into linear support vector machines (SVMs) for lung nodule sample classification. The LC25000 Lung and colon histopathology image dataset, which contains 5,000 digital histopathology images in three categories of benign (normal cells), adenocarcinoma, and squamous carcinoma cells (both are cancerous cells) is used in this study to train and test SVM classifiers. The study results of using a 10-fold cross-validation method achieve an accuracy of 99.3% and an area under the curve (AUC) of 0.99 in classifying these digital histopathology images of lung nodule samples.
在恶性肿瘤中,肺癌在全球范围内的发病率和死亡率最高。为了降低肺癌患者的死亡率,肺癌筛查已经研究了数十年,并且近年来治疗方案有了显著改善。病理学家利用各种技术来确定肺癌的分期、类型和亚型,但最常用的方法之一是对组织病理学切片进行视觉评估。肺癌最常见的亚型是腺癌和鳞状细胞癌,以及肺部良性病变,区分它们需要熟练的病理学家进行目视检查。本文的目的是开发一种用于肺组织病理学图像分类的混合网络,具体做法是将AlexNet、小波和支持向量机相结合。在本研究中,我们将集成离散小波变换(DWT)系数和AlexNet深度特征输入到线性支持向量机(SVM)中,用于肺结节样本分类。本研究使用了LC25000肺和结肠组织病理学图像数据集,该数据集包含5000张数字组织病理学图像,分为良性(正常细胞)、腺癌和鳞状癌细胞(均为癌细胞)三类,用于训练和测试SVM分类器。使用10折交叉验证方法的研究结果在对这些肺结节样本的数字组织病理学图像进行分类时,准确率达到99.3%,曲线下面积(AUC)为0.99。
J Xray Sci Technol. 2023
Int J Comput Assist Radiol Surg. 2021-1
J Thorac Cardiovasc Surg. 2022-4
Comput Methods Programs Biomed. 2013-5-31
Indian J Surg Oncol. 2025-2
BMC Med Inform Decis Mak. 2024-8-7
Comput Mater Contin. 2023-8-30
Cancers (Basel). 2023-2-19