School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, China.
Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.
Med Phys. 2018 Dec;45(12):5472-5481. doi: 10.1002/mp.13237. Epub 2018 Nov 8.
To develop and test a new multifeature-based computer-aided diagnosis (CADx) scheme of lung cancer by fusing quantitative imaging (QI) features and serum biomarkers to improve CADx performance in classifying between malignant and benign pulmonary nodules.
First, a dataset involving 173 patients was retrospectively assembled, which includes computed tomography (CT) images and five serum biomarkers extracted from blood samples. Second, a CADx scheme using a four-step-based semiautomatic segmentation method was applied to segment the targeted lung nodules, and compute 78 QI features from each segmented nodule from CT images. Third, two support vector machine (SVM) classifiers were built using QI features and serum biomarkers, respectively. SVM classifiers were trained and tested using the overall dataset with a Relief feature selection method, a synthetic minority oversampling technique and a leave-one-case-out validation method. Finally, to further improve CADx performance, an information-fusion method was used to combine the prediction scores generated by two SVM classifiers.
Areas under receiver operating characteristic curves (AUC) generated by QI feature and serum biomarker-based SVMs were 0.81 ± 0.03 and 0.69 ± 0.05, respectively. Using an optimal weighted fusion method to combine prediction scores generated by two SVMs, AUC value significantly increased to 0.85 ± 0.03 (P < 0.05).
This study demonstrates (a) higher CADx performance by using QI features than using the serum biomarkers and (b) feasibility of further improving CADx performance by fusion of QI features and serum biomarkers, which indicates that QI features and serum biomarkers contain the complementary classification information.
通过融合定量成像(QI)特征和血清生物标志物,开发和测试一种新的基于多特征的肺癌计算机辅助诊断(CADx)方案,以提高区分良恶性肺结节的 CADx 性能。
首先,回顾性收集了一个包含 173 名患者的数据集,其中包括 CT 图像和从血液样本中提取的五个血清生物标志物。其次,应用基于四步的半自动分割方法的 CADx 方案来分割目标肺结节,并从 CT 图像中计算每个分割结节的 78 个 QI 特征。第三,使用 QI 特征和血清生物标志物分别构建两个支持向量机(SVM)分类器。使用 Relief 特征选择方法、合成少数过采样技术和留一法验证方法,使用整体数据集训练和测试 SVM 分类器。最后,为了进一步提高 CADx 性能,使用信息融合方法来结合两个 SVM 分类器生成的预测分数。
基于 QI 特征和血清生物标志物的 SVM 的受试者工作特征曲线下面积(AUC)分别为 0.81 ± 0.03 和 0.69 ± 0.05。使用最优加权融合方法对两个 SVM 生成的预测分数进行融合,AUC 值显著提高至 0.85 ± 0.03(P < 0.05)。
本研究表明:(a)使用 QI 特征比使用血清生物标志物具有更高的 CADx 性能;(b)通过融合 QI 特征和血清生物标志物进一步提高 CADx 性能的可行性,这表明 QI 特征和血清生物标志物包含互补的分类信息。