文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习和放射组学特征融合的磨玻璃肺结节计算机辅助诊断。

Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.

机构信息

Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 1558 Sanhuan North Road, Huzhou, Zhejiang, 313000, People's Republic of China.

Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China.

出版信息

Phys Med Biol. 2021 Mar 4;66(6):065015. doi: 10.1088/1361-6560/abe735.


DOI:10.1088/1361-6560/abe735
PMID:33596552
Abstract

OBJECTIVES: This study aims to develop a computer-aided diagnosis (CADx) scheme to classify between benign and malignant ground glass nodules (GGNs), and fuse deep leaning and radiomics imaging features to improve the classification performance. METHODS: We first retrospectively collected 513 surgery histopathology confirmed GGNs from two centers. Among these GGNs, 100 were benign and 413 were malignant. All malignant tumors were stage I lung adenocarcinoma. To segment GGNs, we applied a deep convolutional neural network and residual architecture to train and build a 3D U-Net. Then, based on the pre-trained U-Net, we used a transfer learning approach to build a deep neural network (DNN) to classify between benign and malignant GGNs. With the GGN segmentation results generated by 3D U-Net, we also developed a CT radiomics model by adopting a series of image processing techniques, i.e. radiomics feature extraction, feature selection, synthetic minority over-sampling technique, and support vector machine classifier training/testing, etc. Finally, we applied an information fusion method to fuse the prediction scores generated by DNN based CADx model and CT-radiomics based model. To evaluate the proposed model performance, we conducted a comparison experiment by testing on an independent testing dataset. RESULTS: Comparing with DNN model and radiomics model, our fusion model yielded a significant higher area under a receiver operating characteristic curve (AUC) value of 0.73 ± 0.06 (P < 0.01). The fusion model generated an accuracy of 75.6%, F1 score of 84.6%, weighted average F1 score of 70.3%, and Matthews correlation coefficient of 43.6%, which were higher than the DNN model and radiomics model individually. CONCLUSIONS: Our experimental results demonstrated that (1) applying a CADx scheme was feasible to diagnosis of early-stage lung adenocarcinoma, (2) deep image features and radiomics features provided complementary information in classifying benign and malignant GGNs, and (3) it was an effective way to build DNN model with limited dataset by using transfer learning. Thus, to build a robust image analysis based CADx model, one can combine different types of image features to decode the imaging phenotypes of GGN.

摘要

目的:本研究旨在开发一种计算机辅助诊断(CADx)方案,以对良恶性磨玻璃结节(GGN)进行分类,并融合深度学习和放射组学成像特征以提高分类性能。

方法:我们首先从两个中心回顾性地收集了 513 例经手术病理证实的 GGN,其中 100 例为良性,413 例为恶性。所有恶性肿瘤均为 I 期肺腺癌。为了分割 GGN,我们应用了深度卷积神经网络和残差架构来训练和构建 3D U-Net。然后,基于预训练的 U-Net,我们使用迁移学习方法构建了一个深度神经网络(DNN),以对良恶性 GGN 进行分类。利用 3D U-Net 生成的 GGN 分割结果,我们还通过采用一系列图像处理技术,即放射组学特征提取、特征选择、合成少数过采样技术和支持向量机分类器训练/测试等,开发了一个 CT 放射组学模型。最后,我们应用信息融合方法融合由 DNN 基于 CADx 模型和 CT 放射组学模型生成的预测得分。为了评估所提出模型的性能,我们在一个独立的测试数据集上进行了对比实验。

结果:与 DNN 模型和放射组学模型相比,我们的融合模型在受试者工作特征曲线(AUC)下的面积值(0.73±0.06)显著更高(P<0.01)。融合模型生成了 75.6%的准确率、84.6%的 F1 分数、70.3%的加权平均 F1 分数和 43.6%的马修斯相关系数,均高于 DNN 模型和放射组学模型。

结论:我们的实验结果表明:(1)应用 CADx 方案诊断早期肺腺癌是可行的;(2)深度学习图像特征和放射组学特征在对良恶性 GGN 进行分类时提供了互补信息;(3)通过迁移学习使用有限的数据集来构建 DNN 模型是一种有效的方法。因此,为了构建稳健的基于图像分析的 CADx 模型,可以结合不同类型的图像特征来解码 GGN 的成像表型。

相似文献

[1]
Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.

Phys Med Biol. 2021-3-4

[2]
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.

Eur Radiol. 2019-12-6

[3]
Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis.

Phys Med Biol. 2019-7-5

[4]
Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study.

Med Phys. 2018-11-8

[5]
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan.

Front Oncol. 2020-3-31

[6]
The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study.

Technol Cancer Res Treat. 2024

[7]
Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma.

Med Phys. 2022-10

[8]
Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules.

Phys Med Biol. 2018-2-5

[9]
Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma.

Eur Radiol. 2020-1-21

[10]
Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model.

Cancer Imaging. 2024-1-2

引用本文的文献

[1]
An integrated strategy based on radiomics and quantum machine learning: diagnosis and clinical interpretation of pulmonary ground-glass nodules.

BMC Med Imaging. 2025-7-11

[2]
Malignant risk prediction of cystic-solid thyroid nodules using a comprehensive model integrating clinical and ultrasound features, ultrasound radiomics, and deep transfer learning.

Gland Surg. 2025-4-30

[3]
Construction and validation of a risk stratification model based on Lung-RADS v2022 and CT features for predicting the invasive pure ground-glass pulmonary nodules in China.

Insights Imaging. 2025-3-23

[4]
Spectral dual-layer detector CT-based radiomics-deep learning for predicting pathological aggressiveness of stage I lung adenocarcinoma: discrimination of precursor glandular lesions and invasive adenocarcinomas.

Transl Lung Cancer Res. 2025-2-28

[5]
Prediction of benign and malignant ground glass pulmonary nodules based on multi-feature fusion of attention mechanism.

Front Oncol. 2024-10-9

[6]
Feasibility study of opportunistic osteoporosis screening on chest CT using a multi-feature fusion DCNN model.

Arch Osteoporos. 2024-10-17

[7]
Advances in artificial intelligence applications in the field of lung cancer.

Front Oncol. 2024-9-6

[8]
GC-WIR : 3D global coordinate attention wide inverted ResNet network for pulmonary nodules classification.

BMC Pulm Med. 2024-9-20

[9]
Predicting invasion in early-stage ground-glass opacity pulmonary adenocarcinoma: a radiomics-based machine learning approach.

BMC Med Imaging. 2024-9-13

[10]
Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Sci Rep. 2024-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索