Suppr超能文献

生物医学实体链接概述。

An overview of biomedical entity linking throughout the years.

机构信息

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.

Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.

出版信息

J Biomed Inform. 2023 Jan;137:104252. doi: 10.1016/j.jbi.2022.104252. Epub 2022 Dec 2.

Abstract

Biomedical Entity Linking (BEL) is the task of mapping of spans of text within biomedical documents to normalized, unique identifiers within an ontology. This is an important task in natural language processing for both translational information extraction applications and providing context for downstream tasks like relationship extraction. In this paper, we will survey the progression of BEL from its inception in the late 80s to present day state of the art systems, provide a comprehensive list of datasets available for training BEL systems, reference shared tasks focused on BEL, discuss the technical components that comprise BEL systems, and discuss possible directions for the future of the field.

摘要

生物医学实体链接(BEL)是将生物医学文档中的文本跨度映射到本体中的标准化、唯一标识符的任务。这是自然语言处理中的一项重要任务,对于翻译信息提取应用程序和为下游任务(如关系提取)提供上下文都很重要。在本文中,我们将调查从 80 年代末 BEL 的出现到目前最先进的系统的进展,提供一个用于训练 BEL 系统的可用数据集的综合列表,参考专注于 BEL 的共享任务,讨论构成 BEL 系统的技术组件,并讨论该领域的未来可能方向。

相似文献

1
An overview of biomedical entity linking throughout the years.
J Biomed Inform. 2023 Jan;137:104252. doi: 10.1016/j.jbi.2022.104252. Epub 2022 Dec 2.
2
Advancing Chinese biomedical text mining with community challenges.
J Biomed Inform. 2024 Sep;157:104716. doi: 10.1016/j.jbi.2024.104716. Epub 2024 Aug 27.
3
Extraction of causal relations based on SBEL and BERT model.
Database (Oxford). 2021 Feb 18;2021. doi: 10.1093/database/baab005.
4
Biomedical named entity recognition and linking datasets: survey and our recent development.
Brief Bioinform. 2020 Dec 1;21(6):2219-2238. doi: 10.1093/bib/bbaa054.
5
Combining relation extraction with function detection for BEL statement extraction.
Database (Oxford). 2019 Jan 1;2019:bay133. doi: 10.1093/database/bay133.
7
Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.
J Biomed Semantics. 2016 Apr 27;7:22. doi: 10.1186/s13326-016-0059-z. eCollection 2016.
8
BelSmile: a biomedical semantic role labeling approach for extracting biological expression language from text.
Database (Oxford). 2016 May 12;2016. doi: 10.1093/database/baw064. Print 2016.
10
BELB: a biomedical entity linking benchmark.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad698.

引用本文的文献

1
High-precision information retrieval for rapid clinical guideline updates.
NPJ Digit Med. 2025 Apr 27;8(1):227. doi: 10.1038/s41746-025-01648-5.
3
DiMB-RE: mining the scientific literature for diet-microbiome associations.
J Am Med Inform Assoc. 2025 Jun 1;32(6):998-1006. doi: 10.1093/jamia/ocaf054.
4
A simplified retriever to improve accuracy of phenotype normalizations by large language models.
Front Digit Health. 2025 Mar 4;7:1495040. doi: 10.3389/fdgth.2025.1495040. eCollection 2025.
5
One size fits all: Enhanced zero-shot text classification for patient listening on social media.
Front Artif Intell. 2025 Feb 11;7:1397470. doi: 10.3389/frai.2024.1397470. eCollection 2024.
6
xMEN: a modular toolkit for cross-lingual medical entity normalization.
JAMIA Open. 2024 Dec 26;8(1):ooae147. doi: 10.1093/jamiaopen/ooae147. eCollection 2025 Feb.
7
HunFlair2 in a cross-corpus evaluation of biomedical named entity recognition and normalization tools.
Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae564.
10
BELHD: improving biomedical entity linking with homonym disambiguation.
Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae474.

本文引用的文献

1
RegEl corpus: identifying DNA regulatory elements in the scientific literature.
Database (Oxford). 2022 Jun 27;2022. doi: 10.1093/database/baac043.
2
A simple neural vector space model for medical concept normalization using concept embeddings.
J Biomed Inform. 2022 Jun;130:104080. doi: 10.1016/j.jbi.2022.104080. Epub 2022 Apr 23.
3
Concept recognition as a machine translation problem.
BMC Bioinformatics. 2021 Dec 17;22(Suppl 1):598. doi: 10.1186/s12859-021-04141-4.
4
Rare Disease Identification from Clinical Notes with Ontologies and Weak Supervision.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2294-2298. doi: 10.1109/EMBC46164.2021.9630043.
5
Improving broad-coverage medical entity linking with semantic type prediction and large-scale datasets.
J Biomed Inform. 2021 Sep;121:103880. doi: 10.1016/j.jbi.2021.103880. Epub 2021 Aug 12.
7
Medical concept normalization in clinical trials with drug and disease representation learning.
Bioinformatics. 2021 Nov 5;37(21):3856-3864. doi: 10.1093/bioinformatics/btab474.
9
Annotation and initial evaluation of a large annotated German oncological corpus.
JAMIA Open. 2021 Apr 19;4(2):ooab025. doi: 10.1093/jamiaopen/ooab025. eCollection 2021 Apr.
10
NLM-Chem, a new resource for chemical entity recognition in PubMed full text literature.
Sci Data. 2021 Mar 25;8(1):91. doi: 10.1038/s41597-021-00875-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验