Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
J Biomed Inform. 2023 Jan;137:104252. doi: 10.1016/j.jbi.2022.104252. Epub 2022 Dec 2.
Biomedical Entity Linking (BEL) is the task of mapping of spans of text within biomedical documents to normalized, unique identifiers within an ontology. This is an important task in natural language processing for both translational information extraction applications and providing context for downstream tasks like relationship extraction. In this paper, we will survey the progression of BEL from its inception in the late 80s to present day state of the art systems, provide a comprehensive list of datasets available for training BEL systems, reference shared tasks focused on BEL, discuss the technical components that comprise BEL systems, and discuss possible directions for the future of the field.
生物医学实体链接(BEL)是将生物医学文档中的文本跨度映射到本体中的标准化、唯一标识符的任务。这是自然语言处理中的一项重要任务,对于翻译信息提取应用程序和为下游任务(如关系提取)提供上下文都很重要。在本文中,我们将调查从 80 年代末 BEL 的出现到目前最先进的系统的进展,提供一个用于训练 BEL 系统的可用数据集的综合列表,参考专注于 BEL 的共享任务,讨论构成 BEL 系统的技术组件,并讨论该领域的未来可能方向。