文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于光动力疗法和生物成像的上转换稀土纳米材料。

Upconversion rare Earths nanomaterials applied to photodynamic therapy and bioimaging.

作者信息

Rezende Thaís K L, Barbosa Helliomar P, Dos Santos Luiz F, de O Lima Karmel, Alves de Matos Patrícia, Tsubone Tayana M, Gonçalves Rogéria R, Ferrari Jefferson L

机构信息

Laboratório de Desenvolvimento de Materiais Inorgânicos com Terras Raras-DeMITeR, Instituto de Química-(IQ), Universidade Federal de Uberlândia-(UFU), Uberlândia, Brazil.

Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, FFCLRP, Universidade de São Paulo-(USP), Uberlândia, Brazil.

出版信息

Front Chem. 2022 Nov 17;10:1035449. doi: 10.3389/fchem.2022.1035449. eCollection 2022.


DOI:10.3389/fchem.2022.1035449
PMID:36465861
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9713237/
Abstract

Light-based therapies and diagnoses including photodynamic therapy (PDT) have been used in many fields of medicine, including the treatment of non-oncological diseases and many types of cancer. PDT require a light source and a light-sensitive compound, called photosensitizer (PS), to detect and destroy cancer cells. After absorption of the photon, PS molecule gets excited from its singlet ground state to a higher electronically excited state which, among several photophysical processes, can emit light (fluorescence) and/or generate reactive oxygen species (ROS). Moreover, the biological responses are activated only in specific areas of the tissue that have been submitted to exposure to light. The success of the PDT depends on many parameters, such as deep light penetration on tissue, higher PS uptake by undesired cells as well as its photophysical and photochemical characteristics. One of the challenges of PDT is the depth of penetration of light into biological tissues. Because photon absorption and scattering occur simultaneously, these processes depend directly on the light wavelength. Using PS that absorbs photons on "optical transparency windows" of biological tissues promises deeper penetration and less attenuation during the irradiation process. The traditional PS normally is excited by a higher energy photon (UV-Vis light) which has become the Achilles' heel in photodiagnosis and phototreatment of deep-seated tumors below the skin. Thus, the need to have an effective upconverter sensitizer agent is the property in which it absorbs light in the near-infrared (NIR) region and emits in the visible and NIR spectral regions. The red emission can contribute to the therapy and the green and NIR emission to obtain the image, for example. The absorption of NIR light by the material is very interesting because it allows greater penetration depth for bioimaging and can efficiently suppress autofluorescence and light scattering. Consequently, the penetration of NIR radiation is greater, activating the biophotoluminescent material within the cell. Thus, materials containing Rare Earth (RE) elements have a great advantage for these applications due to their attractive optical and physicochemical properties, such as several possibilities of excitation wavelengths - from UV to NIR, strong photoluminescence emissions, relatively long luminescence decay lifetimes (µs to ms), and high sensitivity and easy preparation. In resume, the relentless search for new systems continues. The contribution and understanding of the mechanisms of the various physicochemical properties presented by this system is critical to finding a suitable system for cancer treatment PDT.

摘要

包括光动力疗法(PDT)在内的基于光的治疗和诊断方法已在医学的许多领域得到应用,包括非肿瘤疾病和多种癌症的治疗。PDT需要一个光源和一种称为光敏剂(PS)的光敏化合物来检测和破坏癌细胞。在吸收光子后,PS分子从其单重基态激发到更高的电子激发态,在几个光物理过程中,它可以发光(荧光)和/或产生活性氧(ROS)。此外,生物反应仅在已接受光照的组织特定区域被激活。PDT的成功取决于许多参数,如光在组织中的深度穿透、非靶细胞对PS的更高摄取以及其光物理和光化学特性。PDT的挑战之一是光进入生物组织的穿透深度。由于光子吸收和散射同时发生,这些过程直接取决于光的波长。使用在生物组织的“光学透明窗口”吸收光子的PS有望在照射过程中实现更深的穿透和更少的衰减。传统的PS通常由高能光子(紫外-可见光)激发,这已成为皮肤下深部肿瘤光诊断和光治疗的致命弱点。因此,需要有一种有效的上转换敏化剂,其特性是在近红外(NIR)区域吸收光并在可见光和近红外光谱区域发射光。例如,红色发射可有助于治疗,绿色和近红外发射可用于成像。材料对近红外光的吸收非常有趣,因为它允许在生物成像中实现更大的穿透深度,并能有效抑制自发荧光和光散射。因此,近红外辐射的穿透更深,可激活细胞内的生物光致发光材料。因此,含有稀土(RE)元素的材料由于其吸引人的光学和物理化学性质,如从紫外到近红外的多种激发波长可能性、强光致发光发射、相对较长的发光衰减寿命(微秒到毫秒)以及高灵敏度和易于制备,在这些应用中具有很大优势。总之,对新系统的不懈探索仍在继续。了解该系统呈现的各种物理化学性质的机制并做出贡献对于找到适合癌症治疗PDT的系统至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/996bd906a0d4/fchem-10-1035449-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/c8b0f4b19455/fchem-10-1035449-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/9e3f04609d45/fchem-10-1035449-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/eed663e3563a/fchem-10-1035449-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/30c213d5ffe1/fchem-10-1035449-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/996bd906a0d4/fchem-10-1035449-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/c8b0f4b19455/fchem-10-1035449-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/9e3f04609d45/fchem-10-1035449-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/eed663e3563a/fchem-10-1035449-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/30c213d5ffe1/fchem-10-1035449-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fe/9713237/996bd906a0d4/fchem-10-1035449-g005.jpg

相似文献

[1]
Upconversion rare Earths nanomaterials applied to photodynamic therapy and bioimaging.

Front Chem. 2022-11-17

[2]
Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.

J Nanobiotechnology. 2020-1-23

[3]
Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.

Acta Biomater. 2017-3-15

[4]
Near-infrared light-activated red-emitting upconverting nanoplatform for T-weighted magnetic resonance imaging and photodynamic therapy.

Acta Biomater. 2018-5-12

[5]
Enhancing Triplet-Triplet Annihilation Upconversion: From Molecular Design to Present Applications.

Acc Chem Res. 2022-9-20

[6]
Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy.

ACS Appl Mater Interfaces. 2019-5-30

[7]
Comparison of the Differences between Two-Photon Excitation, Upconversion, and Conventional Photodynamic Therapy on Cancers in In Vitro and In Vivo Studies.

Pharmaceuticals (Basel). 2024-5-21

[8]
Lipid-Wrapped Upconversion Nanoconstruct/Photosensitizer Complex for Near-Infrared Light-Mediated Photodynamic Therapy.

ACS Appl Mater Interfaces. 2018-12-17

[9]
Two-photon excitation nanoparticles for photodynamic therapy.

Chem Soc Rev. 2016-10-5

[10]
Upconversion in photodynamic therapy: plumbing the depths.

Dalton Trans. 2018-2-16

引用本文的文献

[1]
Fabrication and Characterization of Brain Tissue Phantoms Using Agarose Gels for Ultraviolet Vision Systems.

Gels. 2024-8-20

[2]
Temoporfin-Conjugated PEGylated Poly(,-dimethylacrylamide)-Coated Upconversion Colloid for NIR-Induced Photodynamic Therapy of Pancreatic Cancer.

Biomacromolecules. 2024-9-9

[3]
[F]-Radiolabelled Nanoplatforms: A Critical Review of Their Intrinsic Characteristics, Radiolabelling Methods, and Purification Techniques.

Molecules. 2024-3-29

[4]
Synergistic Nanomedicine: Photodynamic, Photothermal and Photoimmune Therapy in Hepatocellular Carcinoma: Fulfilling the Myth of Prometheus?

Int J Mol Sci. 2023-5-5

[5]
Nanoparticle-Based Techniques for Bladder Cancer Imaging: A Review.

Int J Mol Sci. 2023-2-14

本文引用的文献

[1]
Organic radical materials in biomedical applications: State of the art and perspectives.

Exploration (Beijing). 2022-3-17

[2]
Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer.

Nanoscale Adv. 2022-4-11

[3]
A Systematic Review of Clinical Practice Guidelines for Age-related Macular Degeneration.

Ophthalmic Epidemiol. 2023-6

[4]
Facile Synthesis of NaYF4:Yb Up-Conversion Nanoparticles Modified with Photosensitizer and Targeting Antibody for In Vitro Photodynamic Therapy of Hepatocellular Carcinoma.

J Healthc Eng. 2022

[5]
Upconversion nanoparticles@AgBiS core-shell nanoparticles with cancer-cell-specific cytotoxicity for combined photothermal and photodynamic therapy of cancers.

Bioact Mater. 2022-1-10

[6]
A near-infrared triggered upconversion/MoS nanoplatform for tumour-targeted chemo-photodynamic combination therapy.

Colloids Surf B Biointerfaces. 2022-5

[7]
The antibacterial activity of plantaricin GZ1-27 against MRSA and its bio-preservative effect on chilled pork in combination with chitosan.

Int J Food Microbiol. 2022-3-16

[8]
Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels.

Small. 2022-2

[9]
Near-Infrared Light-Triggered Drug Release from Ultraviolet- and Redox-Responsive Polymersome Encapsulated with Core-Shell Upconversion Nanoparticles for Cancer Therapy.

ACS Appl Bio Mater. 2021-4-19

[10]
Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy.

Theranostics. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索