Suppr超能文献

在拦截运动目标时,运动过程中的误差校正会对视觉和触觉干扰产生不同的反应。

When intercepting moving targets, mid-movement error corrections reflect distinct responses to visual and haptic perturbations.

机构信息

Biomedical Engineering, Marquette University and Medical College of Wisconsin, Olin Engineering Center Rm 206, 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA.

Psychology, Marquette University and Neurology, Medical College of Wisconsin, Milwaukee, WI, 53233, USA.

出版信息

Exp Brain Res. 2023 Jan;241(1):231-247. doi: 10.1007/s00221-022-06515-3. Epub 2022 Dec 5.

Abstract

We examined a key aspect of sensorimotor skill: the capability to correct performance errors that arise mid-movement. Participants grasped the handle of a robot that imposed a nominal viscous resistance to hand movement. They watched a target move pseudo-randomly just above the horizontal plane of hand motion and initiated quick interception movements when cued. On some trials, the robot's viscosity or the target's speed changed without warning coincident with the GO cue. We fit a sum-of-Gaussians model to mechanical power measured at the handle to determine the number, magnitude, and relative timing of submovements occurring in each interception attempt. When a single submovement successfully intercepted the target, capture times averaged 410 ms. Sometimes, two or more submovements were required. Initial error corrections typically occurred before feedback could indicate the target had been captured or missed. Error corrections occurred sooner after movement onset in response to mechanical viscosity increases (at 154 ms) than to unprovoked errors on control trials (215 ms). Corrections occurred later (272 ms) in response to viscosity decreases. The latency of corrections for target speed changes did not differ from those in control trials. Remarkably, these early error corrections accommodated the altered testing conditions; speed/viscosity increases elicited more vigorous corrections than in control trials with unprovoked errors; speed/viscosity decreases elicited less vigorous corrections. These results suggest that the brain monitors and predicts the outcome of evolving movements, rapidly infers causes of mid-movement errors, and plans and executes corrections-all within 300 ms of movement onset.

摘要

我们研究了运动技能的一个关键方面

即在运动过程中纠正表现错误的能力。参与者握住机器人的手柄,机器人对手的运动施加名义粘性阻力。他们观看一个目标在手部运动的水平平面上方以伪随机方式移动,并在收到提示时快速进行拦截动作。在某些试验中,机器人的粘性或目标的速度会在 GO 提示时突然改变,而没有任何警告。我们拟合了手柄处测量的机械功率的高斯和模型,以确定每次拦截尝试中发生的子运动的数量、幅度和相对时间。当单个子运动成功拦截目标时,捕获时间平均为 410ms。有时,需要两个或更多的子运动。在反馈可以指示目标已捕获或错过之前,通常会在初始错误之前进行错误校正。与控制试验中的无端错误相比(215ms),机械粘性增加时(在 154ms),错误校正更早发生。响应粘度降低时,校正发生得更晚(272ms)。响应目标速度变化的校正潜伏期与控制试验中的校正潜伏期没有差异。值得注意的是,这些早期错误校正适应了改变的测试条件;速度/粘性增加比在控制试验中无端错误引起的校正更剧烈;速度/粘性降低引起的校正不太剧烈。这些结果表明,大脑监测和预测不断发展的运动的结果,快速推断运动过程中错误的原因,并在运动开始后 300 毫秒内计划和执行校正。

相似文献

2
Models for the extrapolation of target motion for manual interception.用于手动拦截目标运动外推的模型。
J Neurophysiol. 2009 Sep;102(3):1491-502. doi: 10.1152/jn.00398.2009. Epub 2009 Jul 1.
6
Visuomotor predictors of interception.拦截的视觉运动预测因素
PLoS One. 2024 Sep 16;19(9):e0308642. doi: 10.1371/journal.pone.0308642. eCollection 2024.
9
Extrapolation of visual motion for manual interception.用于手动拦截的视觉运动外推
J Neurophysiol. 2008 Jun;99(6):2956-67. doi: 10.1152/jn.90308.2008. Epub 2008 Apr 24.

本文引用的文献

4
Continuously updating one's predictions underlies successful interception.不断更新预测是成功拦截的基础。
J Neurophysiol. 2018 Dec 1;120(6):3257-3274. doi: 10.1152/jn.00517.2018. Epub 2018 Oct 31.
9
A perspective on multisensory integration and rapid perturbation responses.关于多感官整合与快速扰动反应的观点
Vision Res. 2015 May;110(Pt B):215-22. doi: 10.1016/j.visres.2014.06.011. Epub 2014 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验