Suppr超能文献

使用区块链和机器学习算法的智能边缘计算设备中的安全规定:一种新方法。

Security provisions in smart edge computing devices using blockchain and machine learning algorithms: a novel approach.

作者信息

Mishra Kamta Nath, Bhattacharjee Vandana, Saket Shashwat, Mishra Shivam Prakash

机构信息

Department of Computer Science & Engineering, Birla Institute of Technology, Ranchi, India.

出版信息

Cluster Comput. 2022 Nov 30:1-26. doi: 10.1007/s10586-022-03813-x.

Abstract

It is difficult to manage massive amounts of data in an overlying environment with a single server. Therefore, it is necessary to comprehend the security provisions for erratic data in a dynamic environment. The authors are concerned about the security risk of vulnerable data in a Mobile Edge based distributive environment. As a result, edge computing appears to be an excellent perspective in which training can be done in an Edge-based environment. The combination of Edge computing and consensus approach of Blockchain in conjunction with machine learning techniques can further improve data security, mitigate the possibility of exposed data, and it reduces the risk of a data breach. As a result, the concept of federated learning provides a path for training the shared data. A dataset was collected that contained several vulnerable, exposed, recovered, and secured data and data security was precepted under the surveillance of two-factor authentication. This paper discusses the evolution of data and security flaws and their corresponding solutions in smart edge computing devices. The proposed model incorporates data security using consensus approach of Blockchain and machine learning techniques that include several classifiers and optimization techniques. Further, the authors applied the proposed algorithms in an edge computing environment by distributing several batches of data to different clients. As a result, the client privacy was maintained by using Blockchain servers. Furthermore, the authors segregated the client data into batches that were trained using the federated learning technique. The results obtained in this paper demonstrate the implementation of a Blockchain-based training model in an edge-based computing environment.

摘要

在单一服务器的上层环境中管理海量数据是困难的。因此,有必要了解动态环境中不稳定数据的安全规定。作者关注基于移动边缘的分布式环境中易受攻击数据的安全风险。因此,边缘计算似乎是一个很好的视角,在基于边缘的环境中可以进行训练。边缘计算与区块链的共识方法以及机器学习技术相结合,可以进一步提高数据安全性,降低数据暴露的可能性,并减少数据泄露的风险。因此,联邦学习的概念为训练共享数据提供了一条途径。收集了一个包含几个易受攻击、已暴露、已恢复和已保护数据的数据集,并在双因素认证的监控下规范数据安全。本文讨论了智能边缘计算设备中数据的演变、安全漏洞及其相应的解决方案。所提出的模型采用区块链的共识方法和包括几个分类器及优化技术的机器学习技术来整合数据安全。此外,作者通过将几批数据分发给不同客户端,在边缘计算环境中应用了所提出的算法。结果,通过使用区块链服务器维护了客户端隐私。此外,作者将客户端数据分成批次,使用联邦学习技术进行训练。本文获得的结果展示了基于区块链的训练模型在基于边缘的计算环境中的实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9445/9713169/31d8174d062e/10586_2022_3813_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验