文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型冠状病毒疫苗的有效性和安全性。

Efficacy and safety of COVID-19 vaccines.

机构信息

Cochrane France, Paris, France.

Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France.

出版信息

Cochrane Database Syst Rev. 2022 Dec 7;12(12):CD015477. doi: 10.1002/14651858.CD015477.


DOI:10.1002/14651858.CD015477
PMID:36473651
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9726273/
Abstract

BACKGROUND: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally.  OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes.  We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs).  MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available.  This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS: Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.

摘要

背景: 已经开发出多种疫苗来预防 SARS-CoV-2 病毒和随后的 COVID-19 疾病。 其中一些已在全球广泛使用。

目的: 评估 COVID-19 疫苗(作为完整的初级疫苗接种系列或加强剂量)预防 SARS-CoV-2 的功效和安全性。

检索方法: 我们检索了 Cochrane COVID-19 研究注册库和 COVID-19 L·OVE 平台(最后检索日期为 2021 年 11 月 5 日)。 我们还检索了世界卫生组织国际临床试验注册平台、监管机构网站和撤回观察。

入选标准: 我们纳入了比较 COVID-19 疫苗与安慰剂、无疫苗、其他活性疫苗或其他疫苗接种方案的随机对照试验 (RCT)。

数据收集和分析: 我们使用标准的 Cochrane 方法。 对于除免疫原性结果外的所有结果,我们使用 GRADE 评估证据的确定性。 我们分别对每种疫苗进行数据综合,并以 95%置信区间 (CI) 呈现汇总效应估计值。

主要结果: 我们纳入并分析了 41 项评估 12 种不同疫苗的 RCT,包括同源和异源疫苗接种方案以及加强剂量的效果。 32 项 RCT 为多中心研究,5 项为多国研究。 RCT 的样本量为 60 至 44325 名参与者。 参与者的年龄为:36 项 RCT 中年龄为 18 岁或以上;1 项 RCT 中年龄为 12 岁或以上;2 项 RCT 中年龄为 12 至 17 岁;2 项 RCT 中年龄为 3 至 17 岁。29 项 RCT 提供了 60 岁以上人群的结果,3 项 RCT 纳入了免疫功能低下的患者。没有试验纳入孕妇。16 项 RCT 的随访时间为两个月或更短,20 项 RCT 的随访时间为两至六个月,5 项 RCT 的随访时间大于六个月至 12 个月或更短。18 项报告基于预先计划的中期分析。在所有结局中,8 项 RCT 的整体偏倚风险低,而 33 项 RCT 至少有一个结局存在偏倚。我们发现了 343 项已注册但尚未公布结果的 RCT。本摘要报告了世界卫生组织批准的 10 种疫苗对有症状的 COVID-19、严重和危急 COVID-19 以及严重不良事件的关键结局的结果,对于其余结局和疫苗,请参阅正文。由于变异株的出现,关于死亡率的证据通常很少,而且对于所有世界卫生组织批准的疫苗,证据质量均为低或极低,除 AD26.COV2.S(杨森)外,该疫苗可能降低全因死亡率(风险比 (RR) 0.25,95%置信区间 0.09 至 0.67;1 项 RCT,43783 名参与者;高确定性证据)。有症状的 COVID-19 高确定性证据表明,BNT162b2(辉瑞/生物科技/复星)、mRNA-1273(莫德纳)、ChAdOx1(牛津/阿斯利康)、Ad26.COV2.S、BBIBP-CorV(北京科兴中维)和 BBV152(印度血清研究所)与安慰剂相比,可降低有症状 COVID-19 的发生率(疫苗效力 (VE):BNT162b2:97.84%,95%置信区间 44.25%至 99.92%;2 项 RCT,44077 名参与者;mRNA-1273:93.20%,95%置信区间 91.06%至 94.83%;2 项 RCT,31632 名参与者;ChAdOx1:70.23%,95%置信区间 62.10%至 76.62%;2 项 RCT,43390 名参与者;Ad26.COV2.S:66.90%,95%置信区间 59.10%至 73.40%;1 项 RCT,39058 名参与者;BBIBP-CorV:78.10%,95%置信区间 64.80%至 86.30%;1 项 RCT,25463 名参与者;BBV152:77.80%,95%置信区间 65.20%至 86.40%;1 项 RCT,16973 名参与者)。中度确定性证据表明,NVX-CoV2373(诺瓦瓦克斯)与安慰剂相比,可能降低有症状 COVID-19 的发生率(VE 82.91%,95%置信区间 50.49%至 94.10%;3 项 RCT,42175 名参与者)。对于 CoronaVac(科兴),该结局的证据质量为低(VE 69.81%,95%置信区间 12.27%至 89.61%;2 项 RCT,19852 名参与者)。严重或危急 COVID-19 高确定性证据表明,与安慰剂相比,BNT162b2、mRNA-1273、Ad26.COV2.S 和 BBV152 可显著降低因 COVID-19 导致的严重或危急疾病的发生率(VE:BNT162b2:95.70%,95%置信区间 73.90%至 99.90%;1 项 RCT,46077 名参与者;mRNA-1273:98.20%,95%置信区间 92.80%至 99.60%;1 项 RCT,28451 名参与者;AD26.COV2.S:76.30%,95%置信区间 57.90%至 87.50%;1 项 RCT,39058 名参与者;BBV152:93.40%,95%置信区间 57.10%至 99.80%;1 项 RCT,16976 名参与者)。中度确定性证据表明,NVX-CoV2373 可能降低严重或危急 COVID-19 的发生率(VE 100.00%,95%置信区间 86.99%至 100.00%;1 项 RCT,25452 名参与者)。有两项试验报告了 CoronaVac 对严重或危急疾病的高疗效,置信区间较宽,但这些结果无法进行汇总。严重不良事件 (SAE) mRNA-1273、ChAdOx1(牛津/阿斯利康)/SII-ChAdOx1(印度血清研究所)、Ad26.COV2.S 和 BBV152 与安慰剂相比,可能对 SAE 无差异或差异较小(RR:mRNA-1273:0.92,95%置信区间 0.78 至 1.08;2 项 RCT,34072 名参与者;ChAdOx1/SII-ChAdOx1:0.88,95%置信区间 0.72 至 1.07;7 项 RCT,58182 名参与者;Ad26.COV2.S:0.92,95%置信区间 0.69 至 1.22;1 项 RCT,43783 名参与者);BBV152:0.65,9

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/fe85e2d4aa59/nCD015477-FIG-47.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/8afd68bebea4/nCD015477-FIG-01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/f88b4834a34c/tCD015477-FIG-02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/46ca8131fa9c/nCD015477-FIG-03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/5c6200a11288/nCD015477-FIG-04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/dff29816752d/nCD015477-FIG-05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/6a4e688bef80/nCD015477-FIG-06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/43059347888d/nCD015477-FIG-07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/86030aa96d65/nCD015477-FIG-08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/4025b1f8169f/nCD015477-FIG-09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/3496290c6ab5/nCD015477-FIG-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/e0901c9936f0/nCD015477-FIG-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/b9669bacb168/nCD015477-FIG-12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/0f4c193e64ce/nCD015477-FIG-13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/81571a946a05/nCD015477-FIG-14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/e23fcfd5f490/nCD015477-FIG-15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/cab4dd34b0c7/nCD015477-FIG-16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/14683f3ab0e5/nCD015477-FIG-17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/1cce2de943f8/nCD015477-FIG-18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/0248481e1ac3/nCD015477-FIG-19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/7624d3bdc42e/nCD015477-FIG-20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/9cdc78af36c8/nCD015477-FIG-21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/b1a274aa3dc7/nCD015477-FIG-22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/b2f3a33a6500/nCD015477-FIG-23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/ac6c346b986d/nCD015477-FIG-24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/307282d95921/nCD015477-FIG-25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/cde16db53c62/nCD015477-FIG-26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/95c909f180dc/nCD015477-FIG-27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/63117720539e/nCD015477-FIG-28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/96127dd21841/nCD015477-FIG-29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/90d70bb869a6/nCD015477-FIG-30.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a1e1b74c9419/nCD015477-FIG-31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/c5442485cd88/nCD015477-FIG-32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/690f90227559/nCD015477-FIG-33.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/ed6ac5485415/nCD015477-FIG-34.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/741ffc24a5a9/nCD015477-FIG-35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a247dc09b40e/nCD015477-FIG-36.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/be1653068468/nCD015477-FIG-37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/f1d04c2aa64f/nCD015477-FIG-38.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a66a9b0a39a7/nCD015477-FIG-39.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/6de0b3acdb9c/nCD015477-FIG-40.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/d4503d54bcc5/nCD015477-FIG-41.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/595e1feff1d0/nCD015477-FIG-42.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a20edca3cba6/nCD015477-FIG-43.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/86310f480e01/nCD015477-FIG-44.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/6dc9b886b800/nCD015477-FIG-45.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/fe85e2d4aa59/nCD015477-FIG-47.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/8afd68bebea4/nCD015477-FIG-01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/f88b4834a34c/tCD015477-FIG-02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/46ca8131fa9c/nCD015477-FIG-03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/5c6200a11288/nCD015477-FIG-04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/dff29816752d/nCD015477-FIG-05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/6a4e688bef80/nCD015477-FIG-06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/43059347888d/nCD015477-FIG-07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/86030aa96d65/nCD015477-FIG-08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/4025b1f8169f/nCD015477-FIG-09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/3496290c6ab5/nCD015477-FIG-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/e0901c9936f0/nCD015477-FIG-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/b9669bacb168/nCD015477-FIG-12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/0f4c193e64ce/nCD015477-FIG-13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/81571a946a05/nCD015477-FIG-14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/e23fcfd5f490/nCD015477-FIG-15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/cab4dd34b0c7/nCD015477-FIG-16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/14683f3ab0e5/nCD015477-FIG-17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/1cce2de943f8/nCD015477-FIG-18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/0248481e1ac3/nCD015477-FIG-19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/7624d3bdc42e/nCD015477-FIG-20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/9cdc78af36c8/nCD015477-FIG-21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/b1a274aa3dc7/nCD015477-FIG-22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/b2f3a33a6500/nCD015477-FIG-23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/ac6c346b986d/nCD015477-FIG-24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/307282d95921/nCD015477-FIG-25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/cde16db53c62/nCD015477-FIG-26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/95c909f180dc/nCD015477-FIG-27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/63117720539e/nCD015477-FIG-28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/96127dd21841/nCD015477-FIG-29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/90d70bb869a6/nCD015477-FIG-30.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a1e1b74c9419/nCD015477-FIG-31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/c5442485cd88/nCD015477-FIG-32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/690f90227559/nCD015477-FIG-33.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/ed6ac5485415/nCD015477-FIG-34.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/741ffc24a5a9/nCD015477-FIG-35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a247dc09b40e/nCD015477-FIG-36.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/be1653068468/nCD015477-FIG-37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/f1d04c2aa64f/nCD015477-FIG-38.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a66a9b0a39a7/nCD015477-FIG-39.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/6de0b3acdb9c/nCD015477-FIG-40.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/d4503d54bcc5/nCD015477-FIG-41.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/595e1feff1d0/nCD015477-FIG-42.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/a20edca3cba6/nCD015477-FIG-43.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/86310f480e01/nCD015477-FIG-44.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/6dc9b886b800/nCD015477-FIG-45.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9f/9726273/fe85e2d4aa59/nCD015477-FIG-47.jpg

相似文献

[1]
Efficacy and safety of COVID-19 vaccines.

Cochrane Database Syst Rev. 2022-12-7

[2]
Interleukin-1 blocking agents for treating COVID-19.

Cochrane Database Syst Rev. 2022-1-26

[3]
Systemic corticosteroids for the treatment of COVID-19: Equity-related analyses and update on evidence.

Cochrane Database Syst Rev. 2022-11-17

[4]
Nirmatrelvir combined with ritonavir for preventing and treating COVID-19.

Cochrane Database Syst Rev. 2022-9-20

[5]
SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19.

Cochrane Database Syst Rev. 2022-6-17

[6]
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.

Cochrane Database Syst Rev. 2021-9-2

[7]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2025-1-29

[8]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2022-11-17

[9]
Colchicine for the treatment of COVID-19.

Cochrane Database Syst Rev. 2021-10-18

[10]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2021-9-14

引用本文的文献

[1]
Dissociable impacts of physical and psychological factors on side effects after COVID-19 vaccination in Japan: A within-subject repeated measures design.

BMC Psychol. 2025-9-1

[2]
Determinants of vaccine hesitancy among healthcare workers in an international multicenter study within the EuCARE project.

Sci Rep. 2025-8-28

[3]
COVID-19 Vaccination Still Makes Sense: Insights on Pneumonia Risk and Hospitalization from a Large-Scale Study at an Academic Tertiary Center in Italy.

Microorganisms. 2025-7-25

[4]
Impact of Covid-19 Pandemic on Knowledge and Attitude of Nursing Students Regarding Vaccination and Vaccine Hesitancy in China: A Cross-Sectional Study.

Health Sci Rep. 2025-7-30

[5]
Dynamic monitoring of antibody titers in people living with HIV during Omicron epidemic: comparison between unvaccinated and vaccinated individuals.

BMC Infect Dis. 2025-7-30

[6]
Safety, Immunogenicity, and Efficacy of COVID-19 Vaccines in Radiation-Oncology Patients: A Systematic Review and Meta-Analysis.

Vaccines (Basel). 2025-6-30

[7]
Critical illness in immunocompromised patients: insights into relapse or persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): case series report.

J Med Case Rep. 2025-7-27

[8]
Prevalence, patterns, drivers, and perceived benefits of herbal medicine use in COVID-19 patients in Qatar.

J Pharm Policy Pract. 2025-7-23

[9]
COVID-19 vaccination status and the risk of developing lung diseases: A Mendelian randomization study.

Medicine (Baltimore). 2025-7-11

[10]
Cochrane's COVID-19 Living Systematic Reviews: A Mixed-Methods Study of Their Conduct, Reporting and Currency.

Cochrane Evid Synth Methods. 2025-3-28

本文引用的文献

[1]
Safety and efficacy of the two doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a heterologous three-dose combination with SOBERANA-Plus: a double-blind, randomised, placebo-controlled phase 3 clinical trial.

Lancet Reg Health Am. 2023-2

[2]
Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis.

BMC Med. 2022-5-23

[3]
Safety and immunogenicity of Nanocovax, a SARS-CoV-2 recombinant spike protein vaccine: Interim results of a double-blind, randomised controlled phase 1 and 2 trial.

Lancet Reg Health West Pac. 2022-5-16

[4]
Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomised, placebo-controlled, phase 1 trial.

EClinicalMedicine. 2022-3-8

[5]
Comparison of safety and immunogenicity of CoronaVac and ChAdOx1 against the SARS-CoV-2 circulating variants of concern (Alpha, Delta, Beta) in Thai healthcare workers.

Vaccine X. 2022-3-5

[6]
Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression.

Lancet. 2022-3-5

[7]
A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: Safety, reactogenicity and immunogenicity.

Vaccine. 2022-3-18

[8]
Initial analysis of viral dynamics and circulating viral variants during the mRNA-1273 Phase 3 COVE trial.

Nat Med. 2022-4

[9]
Safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein vaccine (CoV2 preS dTM) in healthy adults: interim findings from a phase 2, randomised, dose-finding, multicentre study.

Lancet Infect Dis. 2022-5

[10]
Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials.

PLoS One. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索