Medmain Research, Medmain Inc., Fukuoka, Japan.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221142674. doi: 10.1177/15330338221142674.
Endoscopic submucosal dissection (ESD) is the preferred technique for treating early gastric cancers including poorly differentiated adenocarcinoma without ulcerative findings. The histopathological classification of poorly differentiated adenocarcinoma including signet ring cell carcinoma is of pivotal importance for determining further optimum cancer treatment(s) and clinical outcomes. Because conventional diagnosis by pathologists using microscopes is time-consuming and limited in terms of human resources, it is very important to develop computer-aided techniques that can rapidly and accurately inspect large number of histopathological specimen whole-slide images (WSIs). Computational pathology applications which can assist pathologists in detecting and classifying gastric poorly differentiated adenocarcinoma from ESD WSIs would be of great benefit for routine histopathological diagnostic workflow. In this study, we trained the deep learning model to classify poorly differentiated adenocarcinoma in ESD WSIs by transfer and weakly supervised learning approaches. We evaluated the model on ESD, endoscopic biopsy, and surgical specimen WSI test sets, achieving and ROC-AUC up to 0.975 in gastric ESD test sets for poorly differentiated adenocarcinoma. The deep learning model developed in this study demonstrates the high promising potential of deployment in a routine practical gastric ESD histopathological diagnostic workflow as a computer-aided diagnosis system.
内镜黏膜下剥离术(ESD)是治疗早期胃癌(包括无溃疡性表现的低分化腺癌)的首选技术。低分化腺癌(包括印戒细胞癌)的组织病理学分类对于确定进一步的最佳癌症治疗方法和临床结果至关重要。由于病理学家使用显微镜进行的常规诊断既耗时又受到人力资源的限制,因此开发能够快速准确地检查大量组织病理学标本全切片图像(WSIs)的计算机辅助技术非常重要。能够帮助病理学家从 ESD WSIs 中检测和分类胃低分化腺癌的计算病理学应用程序将极大地有益于常规组织病理学诊断工作流程。在这项研究中,我们通过转移和弱监督学习方法训练深度学习模型来对 ESD WSIs 中的低分化腺癌进行分类。我们在 ESD、内镜活检和手术标本 WSI 测试集中评估了该模型,在胃 ESD 测试集中,低分化腺癌的 ROC-AUC 高达 0.975。本研究中开发的深度学习模型表明,它具有作为计算机辅助诊断系统在常规实用胃 ESD 组织病理学诊断工作流程中部署的巨大潜力。