文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于迁移学习的用于针吸活检全切片图像中前列腺腺癌分类的深度学习模型。

A Deep Learning Model for Prostate Adenocarcinoma Classification in Needle Biopsy Whole-Slide Images Using Transfer Learning.

作者信息

Tsuneki Masayuki, Abe Makoto, Kanavati Fahdi

机构信息

Medmain Research, Medmain Inc., Fukuoka 810-0042, Fukuoka, Japan.

Department of Pathology, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya 320-0834, Tochigi, Japan.

出版信息

Diagnostics (Basel). 2022 Mar 21;12(3):768. doi: 10.3390/diagnostics12030768.


DOI:10.3390/diagnostics12030768
PMID:35328321
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8947489/
Abstract

The histopathological diagnosis of prostate adenocarcinoma in needle biopsy specimens is of pivotal importance for determining optimum prostate cancer treatment. Since diagnosing a large number of cases containing 12 core biopsy specimens by pathologists using a microscope is time-consuming manual system and limited in terms of human resources, it is necessary to develop new techniques that can rapidly and accurately screen large numbers of histopathological prostate needle biopsy specimens. Computational pathology applications that can assist pathologists in detecting and classifying prostate adenocarcinoma from whole-slide images (WSIs) would be of great benefit for routine pathological practice. In this paper, we trained deep learning models capable of classifying needle biopsy WSIs into adenocarcinoma and benign (non-neoplastic) lesions. We evaluated the models on needle biopsy, transurethral resection of the prostate (TUR-P), and The Cancer Genome Atlas (TCGA) public dataset test sets, achieving an ROC-AUC up to 0.978 in needle biopsy test sets and up to 0.9873 in TCGA test sets for adenocarcinoma.

摘要

针吸活检标本中前列腺腺癌的组织病理学诊断对于确定最佳前列腺癌治疗方案至关重要。由于病理学家使用显微镜诊断大量包含12个核心活检标本的病例是一个耗时的人工系统,且人力资源有限,因此有必要开发能够快速、准确地筛选大量组织病理学前列腺针吸活检标本的新技术。能够协助病理学家从全切片图像(WSIs)中检测和分类前列腺腺癌的计算病理学应用程序将对常规病理实践大有裨益。在本文中,我们训练了深度学习模型,能够将针吸活检WSIs分类为腺癌和良性(非肿瘤性)病变。我们在针吸活检、经尿道前列腺切除术(TUR-P)和癌症基因组图谱(TCGA)公共数据集测试集上对模型进行了评估,在针吸活检测试集中腺癌的ROC-AUC高达0.978,在TCGA测试集中高达0.9873。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/2313d8cfe40e/diagnostics-12-00768-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/69d7a9345f67/diagnostics-12-00768-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/48015764282b/diagnostics-12-00768-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/7199a3b9b2b4/diagnostics-12-00768-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/1943f2e2dad4/diagnostics-12-00768-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/593f555b7993/diagnostics-12-00768-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/47630817417d/diagnostics-12-00768-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/2313d8cfe40e/diagnostics-12-00768-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/69d7a9345f67/diagnostics-12-00768-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/48015764282b/diagnostics-12-00768-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/7199a3b9b2b4/diagnostics-12-00768-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/1943f2e2dad4/diagnostics-12-00768-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/593f555b7993/diagnostics-12-00768-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/47630817417d/diagnostics-12-00768-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f2/8947489/2313d8cfe40e/diagnostics-12-00768-g007.jpg

相似文献

[1]
A Deep Learning Model for Prostate Adenocarcinoma Classification in Needle Biopsy Whole-Slide Images Using Transfer Learning.

Diagnostics (Basel). 2022-3-21

[2]
Transfer Learning for Adenocarcinoma Classifications in the Transurethral Resection of Prostate Whole-Slide Images.

Cancers (Basel). 2022-9-28

[3]
A deep learning model for breast ductal carcinoma in situ classification in whole slide images.

Virchows Arch. 2022-5

[4]
Weakly Supervised Learning for Poorly Differentiated Adenocarcinoma Classification in GastricEndoscopic Submucosal Dissection Whole Slide Images.

Technol Cancer Res Treat. 2022

[5]
Inference of core needle biopsy whole slide images requiring definitive therapy for prostate cancer.

BMC Cancer. 2023-1-5

[6]
Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images.

PLoS One. 2022

[7]
Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies.

Mod Pathol. 2020-10

[8]
Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.

JAMA Netw Open. 2020-5-1

[9]
Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning.

Diagnostics (Basel). 2021-11-9

[10]
A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images.

Cancers (Basel). 2022-2-24

引用本文的文献

[1]
Histopathology-Based Prostate Cancer Classification Using ResNet: A Comprehensive Deep Learning Analysis.

J Imaging Inform Med. 2025-5-20

[2]
The current landscape of artificial intelligence in computational histopathology for cancer diagnosis.

Discov Oncol. 2025-4-1

[3]
Enhancing automatic prediction of clinically significant prostate cancer with deep transfer learning 2.5-dimensional segmentation on bi-parametric magnetic resonance imaging (bp-MRI).

Quant Imaging Med Surg. 2024-7-1

[4]
Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy.

NPJ Digit Med. 2024-5-4

[5]
Automated Cellular-Level Dual Global Fusion of Whole-Slide Imaging for Lung Adenocarcinoma Prognosis.

Cancers (Basel). 2023-10-1

[6]
Deep Learning Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review.

Diagnostics (Basel). 2023-8-14

[7]
Endoscopic Image Classification Based on Explainable Deep Learning.

Sensors (Basel). 2023-3-16

[8]
A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application.

BMC Bioinformatics. 2023-3-23

[9]
Editorial on Special Issue "Artificial Intelligence in Pathological Image Analysis".

Diagnostics (Basel). 2023-2-21

[10]
Inference of core needle biopsy whole slide images requiring definitive therapy for prostate cancer.

BMC Cancer. 2023-1-5

本文引用的文献

[1]
A deep learning model for breast ductal carcinoma in situ classification in whole slide images.

Virchows Arch. 2022-5

[2]
Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning.

Diagnostics (Basel). 2021-11-9

[3]
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning.

Cancers (Basel). 2021-10-26

[4]
A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens.

Sensors (Basel). 2021-10-9

[5]
A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images.

Sci Rep. 2021-10-14

[6]
Deep Learning Models for Gastric Signet Ring Cell Carcinoma Classification in Whole Slide Images.

Technol Cancer Res Treat. 2021

[7]
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

BMC Med Imaging. 2021-5-8

[8]
Independent real-world application of a clinical-grade automated prostate cancer detection system.

J Pathol. 2021-6

[9]
A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy.

Sci Rep. 2021-4-19

[10]
Self-Learning for Weakly Supervised Gleason Grading of Local Patterns.

IEEE J Biomed Health Inform. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索