Tsuneki Masayuki, Abe Makoto, Kanavati Fahdi
Medmain Research, Medmain Inc., Fukuoka 810-0042, Fukuoka, Japan.
Department of Pathology, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya 320-0834, Tochigi, Japan.
Diagnostics (Basel). 2022 Mar 21;12(3):768. doi: 10.3390/diagnostics12030768.
The histopathological diagnosis of prostate adenocarcinoma in needle biopsy specimens is of pivotal importance for determining optimum prostate cancer treatment. Since diagnosing a large number of cases containing 12 core biopsy specimens by pathologists using a microscope is time-consuming manual system and limited in terms of human resources, it is necessary to develop new techniques that can rapidly and accurately screen large numbers of histopathological prostate needle biopsy specimens. Computational pathology applications that can assist pathologists in detecting and classifying prostate adenocarcinoma from whole-slide images (WSIs) would be of great benefit for routine pathological practice. In this paper, we trained deep learning models capable of classifying needle biopsy WSIs into adenocarcinoma and benign (non-neoplastic) lesions. We evaluated the models on needle biopsy, transurethral resection of the prostate (TUR-P), and The Cancer Genome Atlas (TCGA) public dataset test sets, achieving an ROC-AUC up to 0.978 in needle biopsy test sets and up to 0.9873 in TCGA test sets for adenocarcinoma.
针吸活检标本中前列腺腺癌的组织病理学诊断对于确定最佳前列腺癌治疗方案至关重要。由于病理学家使用显微镜诊断大量包含12个核心活检标本的病例是一个耗时的人工系统,且人力资源有限,因此有必要开发能够快速、准确地筛选大量组织病理学前列腺针吸活检标本的新技术。能够协助病理学家从全切片图像(WSIs)中检测和分类前列腺腺癌的计算病理学应用程序将对常规病理实践大有裨益。在本文中,我们训练了深度学习模型,能够将针吸活检WSIs分类为腺癌和良性(非肿瘤性)病变。我们在针吸活检、经尿道前列腺切除术(TUR-P)和癌症基因组图谱(TCGA)公共数据集测试集上对模型进行了评估,在针吸活检测试集中腺癌的ROC-AUC高达0.978,在TCGA测试集中高达0.9873。
J Imaging Inform Med. 2025-5-20
Cancers (Basel). 2023-10-1
Diagnostics (Basel). 2023-8-14
Sensors (Basel). 2023-3-16
BMC Bioinformatics. 2023-3-23
Diagnostics (Basel). 2023-2-21
Sensors (Basel). 2021-10-9
Technol Cancer Res Treat. 2021
IEEE J Biomed Health Inform. 2021-8