Suppr超能文献

联合放射组学-临床模型预测不可手术的 III 期和 IV 期非小细胞肺癌的放疗反应。

Combined Radiomics-Clinical Model to Predict Radiotherapy Response in Inoperable Stage III and IV Non-Small-Cell Lung Cancer.

机构信息

Department of Radiation Oncology, 531840The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China.

Department of Radiology, 531840The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China.

出版信息

Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221142400. doi: 10.1177/15330338221142400.

Abstract

Radiotherapy is a promising treatment option for lung cancer, but patients' responses vary. The purpose of the study was to investigate the potential of radiomics and clinical signature for predicting the radiotherapy sensitivity and overall survival of inoperable stage III and IV non-small-cell lung cancer (NSCLC) patients. This retrospective study collected 104 inoperable stage III and IV NSCLC patients at the Yunnan Cancer Hospital from October 2016 to September 2020. They were divided into radiation-sensitive and non-sensitive groups. We used analysis of variance (ANOVA) to select features and support vector machine (SVM) to build the radiomic model. Furthermore, the logistic regression method was used to screen out clinically relevant predictive factors and construct the combined model of radiomics-clinical features. Finally, survival was estimated using the Kaplan-Meier method. There were 40 patients in the radiation-sensitive group and 64 in the non-sensitive group. These patients were divided into training set (73 cases) and testing set (31 cases) according to the ratio of 7:3. Nine radiomics features and one clinical feature were significantly associated with radiotherapy sensitivity. Both the radiomics model and combined model have good predictive performance (the areas under the curve (AUC) values of the testing set were 0.864 (95% confidence interval [CI]: 0.683-0.996) and 0.868 (95% CI: 0.689-1.000), respectively). Only platelet level status was associated with overall survival. The combined model constructed based on radiomics and clinical features can effectively identify the radiation-sensitive population and provide valuable clinical information. Patients with higher platelet levels may have a poor prognosis.

摘要

放射治疗是肺癌的一种有前途的治疗选择,但患者的反应各不相同。本研究旨在探讨放射组学和临床特征预测不可手术的 III 期和 IV 期非小细胞肺癌(NSCLC)患者放疗敏感性和总生存期的潜力。这项回顾性研究收集了 2016 年 10 月至 2020 年 9 月云南省肿瘤医院的 104 例不可手术的 III 期和 IV 期 NSCLC 患者,他们被分为放疗敏感组和非敏感组。我们使用方差分析(ANOVA)选择特征,支持向量机(SVM)构建放射组学模型。此外,逻辑回归方法用于筛选出临床相关的预测因素,并构建放射组学-临床特征的联合模型。最后,使用 Kaplan-Meier 方法估计生存情况。在放射敏感组有 40 例患者,在非敏感组有 64 例患者。这些患者根据 7:3 的比例分为训练集(73 例)和测试集(31 例)。有 9 个放射组学特征和 1 个临床特征与放疗敏感性显著相关。放射组学模型和联合模型均具有良好的预测性能(测试集的曲线下面积(AUC)值分别为 0.864(95%置信区间[CI]:0.683-0.996)和 0.868(95%CI:0.689-1.000))。只有血小板水平与总生存期有关。基于放射组学和临床特征构建的联合模型可有效识别放疗敏感人群,并提供有价值的临床信息。血小板水平较高的患者可能预后较差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ba/9742722/3876d7554716/10.1177_15330338221142400-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验