特征探索器(FAE):一种用于开发和比较放射组学模型的工具。
FeAture Explorer (FAE): A tool for developing and comparing radiomics models.
机构信息
Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
出版信息
PLoS One. 2020 Aug 17;15(8):e0237587. doi: 10.1371/journal.pone.0237587. eCollection 2020.
In radiomics studies, researchers usually need to develop a supervised machine learning model to map image features onto the clinical conclusion. A classical machine learning pipeline consists of several steps, including normalization, feature selection, and classification. It is often tedious to find an optimal pipeline with appropriate combinations. We designed an open-source software package named FeAture Explorer (FAE). It was programmed with Python and used NumPy, pandas, and scikit-learning modules. FAE can be used to extract image features, preprocess the feature matrix, develop different models automatically, and evaluate them with common clinical statistics. FAE features a user-friendly graphical user interface that can be used by radiologists and researchers to build many different pipelines, and to compare their results visually. To prove the effectiveness of FAE, we developed a candidate model to classify the clinical-significant prostate cancer (CS PCa) and non-CS PCa using the PROSTATEx dataset. We used FAE to try out different combinations of feature selectors and classifiers, compare the area under the receiver operating characteristic curve of different models on the validation dataset, and evaluate the model using independent test data. The final model with the analysis of variance as the feature selector and linear discriminate analysis as the classifier was selected and evaluated conveniently by FAE. The area under the receiver operating characteristic curve on the training, validation, and test dataset achieved results of 0.838, 0.814, and 0.824, respectively. FAE allows researchers to build radiomics models and evaluate them using an independent testing dataset. It also provides easy model comparison and result visualization. We believe FAE can be a convenient tool for radiomics studies and other medical studies involving supervised machine learning.
在放射组学研究中,研究人员通常需要开发一个有监督的机器学习模型,将图像特征映射到临床结论上。一个经典的机器学习流程包括几个步骤,包括归一化、特征选择和分类。找到具有适当组合的最佳流程通常很繁琐。我们设计了一个名为 FeAture Explorer(FAE)的开源软件包。它是用 Python 编写的,使用了 NumPy、pandas 和 scikit-learn 模块。FAE 可用于提取图像特征、预处理特征矩阵、自动开发不同的模型,并使用常见的临床统计数据对其进行评估。FAE 具有用户友好的图形用户界面,可供放射科医生和研究人员使用,构建许多不同的流程,并直观地比较他们的结果。为了证明 FAE 的有效性,我们使用 PROSTATEx 数据集开发了一个候选模型,用于对临床显著前列腺癌(CS PCa)和非 CS PCa 进行分类。我们使用 FAE 尝试了不同的特征选择器和分类器组合,比较了不同模型在验证数据集上的接收者操作特征曲线下面积,并使用独立测试数据评估了模型。FAE 方便地选择并评估了以方差分析为特征选择器、线性判别分析为分类器的最终模型。在训练、验证和测试数据集上,接收者操作特征曲线下面积的结果分别为 0.838、0.814 和 0.824。FAE 允许研究人员构建放射组学模型,并使用独立测试数据集对其进行评估。它还提供了易于比较模型和可视化结果的功能。我们相信 FAE 可以成为放射组学研究和其他涉及有监督机器学习的医学研究的便捷工具。
相似文献
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11
J Magn Reson Imaging. 2018-9-19
引用本文的文献
Front Oncol. 2025-7-30
本文引用的文献
Cancer Res. 2017-11-1
Radiology. 2016-2
IEEE Trans Med Imaging. 2014-5
Magn Reson Imaging. 2012-8-13
IEEE Trans Med Imaging. 2009-11-17