Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Tohoku University, Sendai, Japan.
Radiat Oncol. 2021 Apr 30;16(1):80. doi: 10.1186/s13014-021-01810-9.
Radiomics is a new technology to noninvasively predict survival prognosis with quantitative features extracted from medical images. Most radiomics-based prognostic studies of non-small-cell lung cancer (NSCLC) patients have used mixed datasets of different subgroups. Therefore, we investigated the radiomics-based survival prediction of NSCLC patients by focusing on subgroups with identical characteristics.
A total of 304 NSCLC (Stages I-IV) patients treated with radiotherapy in our hospital were used. We extracted 107 radiomic features (i.e., 14 shape features, 18 first-order statistical features, and 75 texture features) from the gross tumor volume drawn on the free breathing planning computed tomography image. Three feature selection methods [i.e., test-retest and multiple segmentation (FS1), Pearson's correlation analysis (FS2), and a method that combined FS1 and FS2 (FS3)] were used to clarify how they affect survival prediction performance. Subgroup analysis for each histological subtype and each T stage applied the best selection method for the analysis of All data. We used a least absolute shrinkage and selection operator Cox regression model for all analyses and evaluated prognostic performance using the concordance-index (C-index) and the Kaplan-Meier method. For subgroup analysis, fivefold cross-validation was applied to ensure model reliability.
In the analysis of All data, the C-index for the test dataset is 0.62 (FS1), 0.63 (FS2), and 0.62 (FS3). The subgroup analysis indicated that the prediction model based on specific histological subtypes and T stages had a higher C-index for the test dataset than that based on All data (All data, 0.64 vs. SCC, 060; ADC, 0.69; T1, 0.68; T2, 0.65; T3, 0.66; T4, 0.70). In addition, the prediction models unified for each T stage in histological subtype showed a different trend in the C-index for the test dataset between ADC-related and SCC-related models (ADC-ADC, 0.72-0.83; SCC-SCC, 0.58-0.71).
Our results showed that feature selection methods moderately affected the survival prediction performance. In addition, prediction models based on specific subgroups may improve the prediction performance. These results may prove useful for determining the optimal radiomics-based predication model.
放射组学是一种从医学图像中提取定量特征以无创预测生存预后的新技术。大多数基于放射组学的非小细胞肺癌(NSCLC)患者的预后研究都使用了不同亚组的混合数据集。因此,我们通过关注具有相同特征的亚组来研究 NSCLC 患者的基于放射组学的生存预测。
我们共使用了 304 例在我院接受放疗的 NSCLC(I-IV 期)患者。我们从自由呼吸计划 CT 图像上勾画的大体肿瘤体积中提取了 107 个放射组学特征(即 14 个形状特征、18 个一阶统计特征和 75 个纹理特征)。使用三种特征选择方法(即测试-再测试和多次分割(FS1)、皮尔逊相关分析(FS2)和结合 FS1 和 FS2 的方法(FS3))来阐明它们如何影响生存预测性能。对每个组织学亚型和每个 T 分期进行亚组分析,对分析使用最佳选择方法对所有数据进行分析。我们对所有分析都使用最小绝对收缩和选择算子 Cox 回归模型,并使用一致性指数(C-index)和 Kaplan-Meier 方法评估预后性能。对于亚组分析,应用了 5 倍交叉验证以确保模型可靠性。
在对所有数据的分析中,测试数据集的 C-index 为 0.62(FS1)、0.63(FS2)和 0.62(FS3)。亚组分析表明,基于特定组织学亚型和 T 分期的预测模型的测试数据集的 C-index 高于基于所有数据的模型(所有数据,0.64 vs SCC,0.60;ADC,0.69;T1,0.68;T2,0.65;T3,0.66;T4,0.70)。此外,在组织学亚型的每个 T 分期统一的预测模型中,ADC 相关和 SCC 相关模型的测试数据集的 C-index 呈现出不同的趋势(ADC-ADC,0.72-0.83;SCC-SCC,0.58-0.71)。
我们的结果表明,特征选择方法对生存预测性能有一定影响。此外,基于特定亚组的预测模型可能会提高预测性能。这些结果可能有助于确定最佳的基于放射组学的预测模型。