Suppr超能文献

预测肿瘤的放射敏感性,以实现精准放疗。

Predicting tumour radiosensitivity to deliver precision radiotherapy.

机构信息

Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.

Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, Manchester, UK.

出版信息

Nat Rev Clin Oncol. 2023 Feb;20(2):83-98. doi: 10.1038/s41571-022-00709-y. Epub 2022 Dec 7.

Abstract

Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.

摘要

由于放射治疗的进步,辐射的物理特性可以得到优化,从而实现个体化治疗;然而,这种优化很少基于生物学特性,因此,治疗通常是基于这样的假设,即所有肿瘤对辐射的反应都相似。辐射会影响多种细胞途径,包括 DNA 损伤、缺氧、增殖、干细胞表型和免疫反应。在这篇综述中,我们总结了这些途径对肿瘤对放射治疗反应的影响,以及目前关于旨在利用这些变化为治疗决策提供信息的基因组分类器的研究现状。我们还讨论了基因组学的进展是否产生了可能改变实践的证据,以及基因组学的进展是否已经准备好单独或联合使用来指导放射治疗的实施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验