Kerns Sarah L, Chuang Kuang-Hsiang, Hall William, Werner Zachary, Chen Yuhchyau, Ostrer Harry, West Catharine, Rosenstein Barry
1 Department of Radiation Oncology, University of Rochester Medical Center , Rochester, NY , USA.
2 Department of Surgery, University of Rochester Medical Center , Rochester, NY , USA.
Br J Radiol. 2018 Nov;91(1091):20170949. doi: 10.1259/bjr.20170949. Epub 2018 Jun 14.
Radiobiology research is building the foundation for applying genomics in precision radiation oncology. Advances in high-throughput approaches will underpin increased understanding of radiosensitivity and the development of future predictive assays for clinical application. There is an established contribution of genetics as a risk factor for radiotherapy side effects. An individual's radiosensitivity is an inherited polygenic trait with an architecture that includes rare mutations in a few genes that confer large effects and common variants in many genes with small effects. Current thinking is that some will be tissue specific, and future tests will be tailored to the normal tissues at risk. The relationship between normal and tumor cell radiosensitivity is poorly understood. Data are emerging suggesting interplay between germline genetic variation and epigenetic modification with growing evidence that changes in DNA methylation regulate the radiosensitivity of cancer cells and histone acetyltransferase inhibitors have radiosensitizing effects. Changes in histone methylation can also impair DNA damage response signaling and alter radiosensitivity. An important effort to advance radiobiology in the genomic era was establishment of the Radiogenomics Consortium to enable the creation of the large radiotherapy cohorts required to exploit advances in genomics. To address challenges in harmonizing data from multiple cohorts, the consortium established the REQUITE project to collect standardized data and genotyping for ~5,000 patients. The collection of detailed dosimetric data is important to produce validated multivariable models. Continued efforts will identify new genes that impact on radiosensitivity to generate new knowledge on toxicity pathogenesis and tests to incorporate into the clinical decision-making process.
放射生物学研究正在为基因组学在精确放射肿瘤学中的应用奠定基础。高通量方法的进展将有助于加深对放射敏感性的理解,并推动未来临床应用预测分析方法的发展。遗传学作为放疗副作用的一个风险因素,其作用已得到确立。个体的放射敏感性是一种遗传的多基因性状,其结构包括少数几个具有大效应的基因中的罕见突变以及许多具有小效应的基因中的常见变异。目前的观点认为,其中一些变异将具有组织特异性,未来的检测将针对有风险的正常组织进行定制。正常细胞和肿瘤细胞的放射敏感性之间的关系尚不清楚。新出现的数据表明,种系遗传变异与表观遗传修饰之间存在相互作用,越来越多的证据表明,DNA甲基化的变化调节癌细胞的放射敏感性,组蛋白乙酰转移酶抑制剂具有放射增敏作用。组蛋白甲基化的变化也会损害DNA损伤反应信号传导并改变放射敏感性。基因组时代推动放射生物学发展的一项重要工作是成立了放射基因组学联盟,以创建利用基因组学进展所需的大型放疗队列。为应对协调多个队列数据方面的挑战,该联盟设立了REQUITE项目,为约5000名患者收集标准化数据和基因分型。收集详细的剂量学数据对于生成经过验证的多变量模型很重要。持续的努力将识别影响放射敏感性的新基因,以产生关于毒性发病机制的新知识,并将相关检测纳入临床决策过程。