Suppr超能文献

磷酸果糖激酶2/果糖双磷酸酶2是丝状真菌代谢工程的一个潜在靶点。

PFK2/FBPase-2 is a potential target for metabolic engineering in the filamentous fungus .

作者信息

Hu Die, Zhang Yongli, Liu Defei, Wang Depei, Tian Chaoguang

机构信息

College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

出版信息

Front Microbiol. 2022 Nov 21;13:1056694. doi: 10.3389/fmicb.2022.1056694. eCollection 2022.

Abstract

The key enzyme 6-phosphofructo-2-kinase (PFK2)/fructose-2,6-bisphosphatase (FBPase-2) is responsible for regulating the rates of glycolysis and gluconeogenesis in eukaryotes. However, its functions and mechanisms in filamentous fungi remain largely enigmatic. In this study, we systematically investigated the function of this enzyme in , a thermophilic filamentous fungus with great capacity to produce industrial enzymes and organic acids. Our results showed that the genome encodes three isomers, all with the PFK2/FBPase-2 structure: , and . Overexpression of each gene revealed that endogenous expression of (PFK2 activity) promoted glucose metabolism, while overexpression of (FBPase-2 activity) inhibited strain growth. Using knockouts, we found that each gene was individually non-essential, but the triple knockout led to significantly slower growth compared with the wild-type strain. Only the single knockout exhibited 22.15% faster sugar metabolism, exerted through activation of 6-phosphofructo-1-kinase (PFK1), thereby significantly promoting glycolysis and the tricarboxylic acid cycle. The FBPase-2 deletion mutant strain also exhibited overflow metabolism, and knocking out was proved to be able to improve the production and synthesis rate of various metabolites, such as glycerol and malate. This is the first study to systematically investigate the function of PFK2/FBPase-2 in a thermophilic fungus, providing an effective target for metabolic engineering in filamentous fungi.

摘要

关键酶6-磷酸果糖-2-激酶(PFK2)/果糖-2,6-二磷酸酶(FBPase-2)负责调节真核生物中糖酵解和糖异生的速率。然而,其在丝状真菌中的功能和机制在很大程度上仍然是个谜。在本研究中,我们系统地研究了这种酶在一种具有强大工业酶和有机酸生产能力的嗜热丝状真菌中的功能。我们的结果表明,该真菌基因组编码三种异构体,均具有PFK2/FBPase-2结构:、和。每个基因的过表达表明,内源性表达(PFK2活性)促进葡萄糖代谢,而过表达(FBPase-2活性)则抑制菌株生长。通过基因敲除,我们发现每个基因单独存在时并非必需,但三基因敲除导致与野生型菌株相比生长明显减慢。只有单基因敲除表现出糖代谢速度加快22.15%,这是通过激活6-磷酸果糖-1-激酶(PFK1)实现的,从而显著促进糖酵解和三羧酸循环。FBPase-2缺失突变菌株也表现出溢流代谢,并且敲除被证明能够提高各种代谢产物如甘油和苹果酸的产量和合成速率。这是首次系统研究PFK2/FBPase-2在嗜热真菌中的功能,为丝状真菌的代谢工程提供了一个有效的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/695e/9721465/d4787c314747/fmicb-13-1056694-g001.jpg

相似文献

1
PFK2/FBPase-2 is a potential target for metabolic engineering in the filamentous fungus .
Front Microbiol. 2022 Nov 21;13:1056694. doi: 10.3389/fmicb.2022.1056694. eCollection 2022.
2
Metabolic engineering of the thermophilic filamentous fungus to produce fumaric acid.
Biotechnol Biofuels. 2018 Dec 3;11:323. doi: 10.1186/s13068-018-1319-1. eCollection 2018.
7
Metabolic engineering of the cellulolytic thermophilic fungus to produce ethanol from cellobiose.
Biotechnol Biofuels. 2020 Feb 1;13:23. doi: 10.1186/s13068-020-1661-y. eCollection 2020.
8
Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus .
Biotechnol Biofuels. 2019 Dec 23;12:293. doi: 10.1186/s13068-019-1637-y. eCollection 2019.
9
MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the and in .
Appl Environ Microbiol. 2022 Oct 11;88(19):e0126322. doi: 10.1128/aem.01263-22. Epub 2022 Sep 27.
10
The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila.
Biotechnol Biofuels Bioprod. 2023 Apr 3;16(1):58. doi: 10.1186/s13068-023-02313-3.

本文引用的文献

2
Transcriptomic and metabolomic analysis reveals genes related to stress tolerance in high gravity brewing.
World J Microbiol Biotechnol. 2022 Feb 21;38(4):59. doi: 10.1007/s11274-021-03115-1.
4
Metabolic engineering of the cellulolytic thermophilic fungus to produce ethanol from cellobiose.
Biotechnol Biofuels. 2020 Feb 1;13:23. doi: 10.1186/s13068-020-1661-y. eCollection 2020.
5
Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila.
Metab Eng. 2020 Sep;61:416-426. doi: 10.1016/j.ymben.2019.05.007. Epub 2019 May 9.
7
Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae.
J Agric Food Chem. 2018 Dec 19;66(50):13191-13198. doi: 10.1021/acs.jafc.8b04291. Epub 2018 Dec 6.
8
Comprehensive Improvement of Sample Preparation Methodologies Facilitates Dynamic Metabolomics of Aspergillus niger.
Biotechnol J. 2019 Mar;14(3):e1800315. doi: 10.1002/biot.201800315. Epub 2018 Sep 20.
9
Four Key Steps Control Glycolytic Flux in Mammalian Cells.
Cell Syst. 2018 Jul 25;7(1):49-62.e8. doi: 10.1016/j.cels.2018.06.003. Epub 2018 Jun 27.
10
Transcriptional analysis of Myceliophthora thermophila on soluble starch and role of regulator AmyR on polysaccharide degradation.
Bioresour Technol. 2018 Oct;265:558-562. doi: 10.1016/j.biortech.2018.05.086. Epub 2018 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验