Li Qiang, Gong Dinghong, Shen Jie, Rao Chang, Ni Lei, Zhang Hongyi
College of Education Science, Guizhou Education University, Guiyang, China.
Guizhou Education University, Guiyang, China.
Front Neurosci. 2022 Nov 21;16:1046752. doi: 10.3389/fnins.2022.1046752. eCollection 2022.
Compared with traditional volume space-based multivariate pattern analysis (MVPA), surface space-based MVPA has many advantages and has received increasing attention. However, surface space-based MVPA requires considerable programming and is therefore difficult for people without a programming foundation. To address this, we developed a MATLAB toolbox based on a graphical interactive interface (GUI) called surface space-based multivariate pattern analysis (SF-MVPA) in this manuscript. Unlike the traditional MVPA toolboxes, which often only include MVPA calculation processes after data preprocessing, SF-MVPA covers the complete pipeline of surface space-based MVPA, including raw data format conversion, surface reconstruction, functional magnetic resonance (fMRI) data preprocessing, comparative analysis, surface space-based MVPA, leave one-run out cross validation, and family-wise error correction. With SF-MVPA, users can complete the complete pipeline of surface space-based MVPA without programming. In addition, SF-MVPA is designed for parallel computing and hence has high computational efficiency. After introducing SF-MVPA, we analyzed a sample dataset of tonal working memory load. By comparison with another surface space-based MVPA toolbox named CoSMoMVPA, we found that the two toolboxes obtained consistent results. We hope that through this toolbox, users can more easily implement surface space-based MVPA.
与传统的基于体素空间的多变量模式分析(MVPA)相比,基于表面空间的MVPA具有许多优点,并受到越来越多的关注。然而,基于表面空间的MVPA需要大量的编程,因此对于没有编程基础的人来说很困难。为了解决这个问题,我们在本文中开发了一个基于图形交互界面(GUI)的MATLAB工具箱,称为基于表面空间的多变量模式分析(SF-MVPA)。与传统的MVPA工具箱不同,传统工具箱通常只包括数据预处理后的MVPA计算过程,SF-MVPA涵盖了基于表面空间的MVPA的完整流程,包括原始数据格式转换、表面重建、功能磁共振成像(fMRI)数据预处理、对比分析、基于表面空间的MVPA、留一法交叉验证和族系误差校正。使用SF-MVPA,用户无需编程即可完成基于表面空间的MVPA的完整流程。此外,SF-MVPA专为并行计算而设计,因此具有很高的计算效率。在介绍了SF-MVPA之后,我们分析了一个音调工作记忆负荷的样本数据集。通过与另一个名为CoSMoMVPA的基于表面空间的MVPA工具箱进行比较,我们发现这两个工具箱得到了一致的结果。我们希望通过这个工具箱,用户能够更轻松地实现基于表面空间的MVPA。