Suppr超能文献

基于深度学习的多变量模式分析(dMVPA):教程与工具箱

Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox.

作者信息

Kuntzelman Karl M, Williams Jacob M, Lim Phui Cheng, Samal Ashok, Rao Prahalada K, Johnson Matthew R

机构信息

Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.

Office of Technology Development and Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.

出版信息

Front Hum Neurosci. 2021 Mar 2;15:638052. doi: 10.3389/fnhum.2021.638052. eCollection 2021.

Abstract

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, "deep learning" (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data - which we term "deep MVPA," or dMVPA - and introduce a new software toolbox (the "Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education" package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.

摘要

近年来,多变量模式分析(MVPA)通过实现新的实验设计以及增强功能磁共振成像(fMRI)、脑电图(EEG)和其他神经成像方法的推理能力,极大地推动了认知神经科学的发展。在同一时期,“深度学习”(该术语用于指代使用具有卷积、循环或类似复杂架构的人工神经网络)在机器学习领域引发了一场类似的革命,并已应用于广泛的各种应用中。传统的MVPA也使用一种机器学习形式,但最常用的是基于线性计算的简单得多的技术;已有多项研究将深度学习技术应用于神经成像数据,但我们认为这些研究仅仅触及了深度学习在该领域所蕴含潜力的表面。在本文中,我们为初次接触该技术的人简要介绍深度学习,探讨使用深度学习分析神经成像数据(我们将其称为“深度MVPA”,即dMVPA)在逻辑上的优缺点,并介绍一个新的软件工具箱(简称为“神经成像中的深度学习:探索、分析、工具与教育”软件包,即DeLINEATE),旨在为世界各地的神经科学家(实际上,更广泛地说,是为科学家们)开展dMVPA提供便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8607/7960649/37774a2f6b57/fnhum-15-638052-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验