Leicester International Institute, Dalian University of Technology, Panjin 124221, China.
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China.
ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55559-55567. doi: 10.1021/acsami.2c16081. Epub 2022 Dec 8.
Electrochemical N reduction reaction (NRR) emerges as a highly attractive alternative to the Haber-Bosch process for producing ammonia (NH) under ambient circumstances. Currently, this technology still faces tremendous challenges due to the low ammonia production rate and low Faradaic efficiency, urgently prompting researchers to explore highly efficient electrocatalysts. Inspired by the Fe-Mo cofactor in nitrogenase, we report Mo-doped hematite (FeO) porous nanospheres containing Fe-O-Mo subunits for enhanced activity and selectivity in the electrochemical reduction from N to NH. Mo-doping induces the morphology change from a solid sphere to a porous sphere and enriches lattice defects, creating more active sites. It also regulates the electronic structures of FeO to accelerate charge transfer and enhance the intrinsic activity. As a consequence, Mo-doped FeO achieves effective N fixation with a high ammonia production rate of 21.3 ± 1.1 μg h mg as well as a prominent Faradaic efficiency (FE) of 11.2 ± 0.6%, superior to the undoped FeO and other iron oxide catalysts. Density functional theory (DFT) calculations further unravel that the Mo-doping in FeO (110) narrows the band gap, promotes the N activation on the Mo site with an elongated N≡N bond length of 1.132 Å in the end-on configuration, and optimizes an associative distal pathway with a decreased energy barrier. Our results may pave the way toward enhancing the electrocatalytic NRR performance of iron-based materials by atomic-scale heteroatom doping.
电化学氮还原反应 (NRR) 在常温常压下生产氨 (NH) 方面,作为哈伯-博世 (Haber-Bosch) 工艺的极具吸引力的替代方案而出现。目前,由于氨产率低和法拉第效率低,该技术仍然面临巨大挑战,迫切需要研究人员探索高效的电催化剂。受氮酶中 Fe-Mo 辅因子的启发,我们报告了 Mo 掺杂赤铁矿 (FeO) 多孔纳米球,其中含有 Fe-O-Mo 亚基,可提高电化学还原 N 到 NH 的活性和选择性。Mo 掺杂诱导形貌从实心球变为多孔球,并丰富了晶格缺陷,创造了更多的活性位点。它还调节了 FeO 的电子结构,加速电荷转移并增强内在活性。结果,Mo 掺杂的 FeO 实现了有效的 N 固定,氨的产率高达 21.3 ± 1.1 μg h mg,同时具有显著的法拉第效率 (FE) 为 11.2 ± 0.6%,优于未掺杂的 FeO 和其他氧化铁催化剂。密度泛函理论 (DFT) 计算进一步揭示了 FeO(110)中的 Mo 掺杂缩小了带隙,促进了 Mo 位上的 N 活化,使端接构型中 N≡N 键长延长至 1.132 Å,并优化了具有降低能量势垒的缔合远端路径。我们的结果可能为通过原子尺度的杂原子掺杂来提高铁基材料的电催化 NRR 性能铺平道路。