Suppr超能文献

模拟 SARS-CoV-2 刺突蛋白突变对 ACE2 结合的影响。

Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding.

机构信息

Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India.

DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark.

出版信息

J Mol Graph Model. 2023 Mar;119:108379. doi: 10.1016/j.jmgm.2022.108379. Epub 2022 Nov 24.

Abstract

The binding affinity of the SARS-CoV-2 spike (S)-protein to the human membrane protein ACE2 is critical for virus function. Computational structure-based screening of new S-protein mutations for ACE2 binding lends promise to rationalize virus function directly from protein structure and ideally aid early detection of potentially concerning variants. We used a computational protocol based on cryo-electron microscopy structures of the S-protein to estimate the change in ACE2-affinity due to S-protein mutation (ΔΔG) in good trend agreement with experimental ACE2 affinities. We then expanded predictions to all possible S-protein mutations in 21 different S-protein-ACE2 complexes (400,000 ΔΔG data points in total), using mutation group comparisons to reduce systematic errors. The results suggest that mutations that have arisen in major variants as a group maintain ACE2 affinity significantly more than random mutations in the total protein, at the interface, and at evolvable sites. Omicron mutations as a group had a modest change in binding affinity compared to mutations in other major variants. The single-mutation effects seem consistent with ACE2 binding being optimized and maintained in omicron, despite increased importance of other selection pressures (antigenic drift), however, epistasis, glycosylation and in vivo conditions will modulate these effects. Computational prediction of SARS-CoV-2 evolution remains far from achieved, but the feasibility of large-scale computation is substantially aided by using many structures and mutation groups rather than single mutation effects, which are very uncertain. Our results demonstrate substantial challenges but indicate ways forward to improve the quality of computer models for assessing SARS-CoV-2 mutation effects.

摘要

SARS-CoV-2 刺突(S)-蛋白与人膜蛋白 ACE2 的结合亲和力对于病毒功能至关重要。基于结构的计算筛选新的 S-蛋白突变与 ACE2 的结合,有望直接从蛋白质结构合理化病毒功能,并理想地帮助早期检测潜在关注的变体。我们使用了一种基于 S-蛋白冷冻电子显微镜结构的计算方案,来估计由于 S-蛋白突变(ΔΔG)导致 ACE2 亲和力的变化,该方案与实验 ACE2 亲和力具有良好的趋势一致性。然后,我们使用突变组比较来减少系统误差,将预测扩展到 21 种不同 S-蛋白-ACE2 复合物中的所有可能的 S-蛋白突变(总共 400,000 个 ΔΔG 数据点)。结果表明,作为一个群体出现在主要变体中的突变比整个蛋白质中的随机突变在界面和可进化位点上更能保持 ACE2 的亲和力。与其他主要变体中的突变相比,奥密克戎突变群体的结合亲和力变化不大。尽管其他选择压力(抗原漂移)变得更加重要,但单突变效应似乎表明奥密克戎中的 ACE2 结合得到了优化和维持,然而,上位性、糖基化和体内条件将调节这些效应。SARS-CoV-2 进化的计算预测还远远没有实现,但使用许多结构和突变组而不是单个突变效应进行大规模计算在很大程度上提高了可行性,因为单个突变效应非常不确定。我们的结果表明存在重大挑战,但指出了提高计算机模型评估 SARS-CoV-2 突变效应的质量的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d8/9690204/b25d50b3f71e/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验