Department of Molecular & Cell Biology, University of Leicester, Leicester, Leicester United Kingdom.
Department of Cardiovascular Sciences, University of Leicester, Leicester, Leicester United Kingdom.
PLoS Pathog. 2022 Jul 18;18(7):e1010733. doi: 10.1371/journal.ppat.1010733. eCollection 2022 Jul.
Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.
新出现的 SARS-CoV-2 变种给持续的 COVID-19 大流行带来了重大挑战。能够预测 SARS-CoV-2 中可能出现的导致传染性增加或免疫逃逸的突变,对于开发广泛作用的治疗方法和疫苗以及优先进行病毒监测和控制将是非常有价值的。在这里,我们使用体外进化来寻找能够显著增加与 ACE2 结合的 SARS-CoV-2 受体结合域(RBD)中的突变。我们发现了一个双突变,S477N 和 Q498H,它使 RBD 与 ACE2 的亲和力增加了 6.5 倍。这种亲和力的提高主要是由 Q498H 突变驱动的。我们通过冷冻电子显微镜确定了突变体-RBD:ACE2 复合物的结构,揭示了增加亲和力的机制。将 Q498H 添加到 SARS-CoV-2 RBD 变体中,发现可以提高变体与人类 ACE2 的结合亲和力,并赋予其与高亲和力结合大鼠 ACE2 的新能力。然而令人惊讶的是,在存在常见的 N501Y 突变的情况下,由于 H498 和 Y501 侧链之间的冲突,Q498H 抑制了结合。为了实现类似 Q498H 的分子间键合网络、亲和力提高和跨物种结合,带有 N501Y 突变的 RBD 变体必须获得相关的 Q498R 突变。因此,SARS-CoV-2 RBD 可以通过涉及 Q498 的两种替代突变途径获得大的亲和力提高和跨物种结合,途径选择取决于变体是否已经具有 N501Y 突变。这些突变现在出现在新出现的 SARS-CoV-2 变种中,它们有可能影响人际传播和跨物种传播。