Suppr超能文献

流感感染的疫情监测:一种无网络策略——中国香港特别行政区,2008 - 2011年

Epidemic Surveillance of Influenza Infections: A Network-Free Strategy - Hong Kong Special Administrative Region, China, 2008-2011.

作者信息

Du Zhanwei, Tan Qi, Bai Yuan, Wang Lin, Cowling Benjamin J, Holme Petter

机构信息

WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science and Technology Park, Hong Kong SAR, China.

出版信息

China CDC Wkly. 2022 Nov 18;4(46):1025-1031. doi: 10.46234/ccdcw2022.207.

Abstract

INTRODUCTION

The ease of coronavirus disease 2019 (COVID-19) non-pharmacological interventions and the increased susceptibility during the past COVID-19 pandemic could be a precursor for the resurgence of influenza, potentially leading to a severe outbreak in the winter of 2022 and future seasons. The recent increased availability of data on Electronic Health Records (EHR) in public health systems, offers new opportunities to monitor individuals to mitigate outbreaks.

METHODS

We introduced a new methodology to rank individuals for surveillance in temporal networks, which was more practical than the static networks. By targeting previously infected nodes, this method used readily available EHR data instead of the contact-network structure.

RESULTS

We validated this method qualitatively in a real-world cohort study and evaluated our approach quantitatively by comparing it to other surveillance methods on three temporal and empirical networks. We found that, despite not explicitly exploiting the contacts' network structure, it remained the best or close to the best strategy. We related the performance of the method to the public health goals, the reproduction number of the disease, and the underlying temporal-network structure (e.g., burstiness).

DISCUSSION

The proposed strategy of using historical records for sentinel surveillance selection can be taken as a practical and robust alternative without the knowledge of individual contact behaviors for public health policymakers.

摘要

引言

2019冠状病毒病(COVID-19)非药物干预措施的便利性以及在过去COVID-19大流行期间易感性的增加,可能是流感卷土重来的先兆,有可能在2022年冬季及未来季节引发严重疫情。公共卫生系统中电子健康记录(EHR)数据近期可用性的提高,为监测个体以减轻疫情爆发提供了新机会。

方法

我们引入了一种新方法,用于在时间网络中对个体进行监测排序,该方法比静态网络更实用。通过针对先前感染的节点,此方法使用现成的EHR数据而非接触网络结构。

结果

我们在一项真实队列研究中对该方法进行了定性验证,并通过在三个时间和实证网络上与其他监测方法进行比较,对我们的方法进行了定量评估。我们发现,尽管没有明确利用接触者的网络结构,但它仍是最佳或接近最佳的策略。我们将该方法的性能与公共卫生目标、疾病的繁殖数以及潜在的时间网络结构(如突发性)相关联。

讨论

所提出的利用历史记录进行哨点监测选择的策略,可作为一种实用且稳健的替代方法,供公共卫生政策制定者在不了解个体接触行为的情况下使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c69/9713574/f08a1b509dd9/ccdcw-4-46-1025-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验