STEM College, RMIT University, Melbourne, VIC, Australia.
Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac797.
Over 300 000 protein-protein interaction (PPI) pairs have been identified in the human proteome and targeting these is fast becoming the next frontier in drug design. Predicting PPI sites, however, is a challenging task that traditionally requires computationally expensive and time-consuming docking simulations. A major weakness of modern protein docking algorithms is the inability to account for protein flexibility, which ultimately leads to relatively poor results.
Here, we propose DockNet, an efficient Siamese graph-based neural network method which predicts contact residues between two interacting proteins. Unlike other methods that only utilize a protein's surface or treat the protein structure as a rigid body, DockNet incorporates the entire protein structure and places no limits on protein flexibility during an interaction. Predictions are modeled at the residue level, based on a diverse set of input node features including residue type, surface accessibility, residue depth, secondary structure, pharmacophore and torsional angles. DockNet is comparable to current state-of-the-art methods, achieving an area under the curve (AUC) value of up to 0.84 on an independent test set (DB5), can be applied to a variety of different protein structures and can be utilized in situations where accurate unbound protein structures cannot be obtained.
DockNet is available at https://github.com/npwilliams09/docknet and an easy-to-use webserver at https://biosig.lab.uq.edu.au/docknet. All other data underlying this article are available in the article and in its online supplementary material.
Supplementary data are available at Bioinformatics online.
在人类蛋白质组中已经鉴定出超过 300000 对蛋白质-蛋白质相互作用(PPI)对,针对这些相互作用的研究正迅速成为药物设计的下一个前沿领域。然而,预测 PPI 位点是一项具有挑战性的任务,传统上需要计算成本高且耗时的对接模拟。现代蛋白质对接算法的一个主要弱点是无法解释蛋白质的灵活性,这最终导致相对较差的结果。
在这里,我们提出了 DockNet,这是一种基于 Siamese 图的高效神经网络方法,用于预测两个相互作用的蛋白质之间的接触残基。与仅利用蛋白质表面或将蛋白质结构视为刚体的其他方法不同,DockNet 结合了整个蛋白质结构,并且在相互作用过程中对蛋白质的灵活性没有任何限制。预测是基于残基水平建模的,基于多种输入节点特征,包括残基类型、表面可及性、残基深度、二级结构、药效团和扭转角。DockNet 可与当前最先进的方法相媲美,在独立测试集(DB5)上达到了高达 0.84 的曲线下面积(AUC)值,可以应用于各种不同的蛋白质结构,并且可以在无法获得准确的未结合蛋白质结构的情况下使用。
DockNet 可在 https://github.com/npwilliams09/docknet 上获得,并且在 https://biosig.lab.uq.edu.au/docknet 上有一个易于使用的网络服务器。本文中所有其他基础数据都可在文章及其在线补充材料中获得。
补充数据可在 Bioinformatics 在线获得。