Suppr超能文献

DockNet:高通量蛋白质-蛋白质界面接触预测。

DockNet: high-throughput protein-protein interface contact prediction.

机构信息

STEM College, RMIT University, Melbourne, VIC, Australia.

Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.

出版信息

Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac797.

Abstract

MOTIVATION

Over 300 000 protein-protein interaction (PPI) pairs have been identified in the human proteome and targeting these is fast becoming the next frontier in drug design. Predicting PPI sites, however, is a challenging task that traditionally requires computationally expensive and time-consuming docking simulations. A major weakness of modern protein docking algorithms is the inability to account for protein flexibility, which ultimately leads to relatively poor results.

RESULTS

Here, we propose DockNet, an efficient Siamese graph-based neural network method which predicts contact residues between two interacting proteins. Unlike other methods that only utilize a protein's surface or treat the protein structure as a rigid body, DockNet incorporates the entire protein structure and places no limits on protein flexibility during an interaction. Predictions are modeled at the residue level, based on a diverse set of input node features including residue type, surface accessibility, residue depth, secondary structure, pharmacophore and torsional angles. DockNet is comparable to current state-of-the-art methods, achieving an area under the curve (AUC) value of up to 0.84 on an independent test set (DB5), can be applied to a variety of different protein structures and can be utilized in situations where accurate unbound protein structures cannot be obtained.

AVAILABILITY AND IMPLEMENTATION

DockNet is available at https://github.com/npwilliams09/docknet and an easy-to-use webserver at https://biosig.lab.uq.edu.au/docknet. All other data underlying this article are available in the article and in its online supplementary material.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在人类蛋白质组中已经鉴定出超过 300000 对蛋白质-蛋白质相互作用(PPI)对,针对这些相互作用的研究正迅速成为药物设计的下一个前沿领域。然而,预测 PPI 位点是一项具有挑战性的任务,传统上需要计算成本高且耗时的对接模拟。现代蛋白质对接算法的一个主要弱点是无法解释蛋白质的灵活性,这最终导致相对较差的结果。

结果

在这里,我们提出了 DockNet,这是一种基于 Siamese 图的高效神经网络方法,用于预测两个相互作用的蛋白质之间的接触残基。与仅利用蛋白质表面或将蛋白质结构视为刚体的其他方法不同,DockNet 结合了整个蛋白质结构,并且在相互作用过程中对蛋白质的灵活性没有任何限制。预测是基于残基水平建模的,基于多种输入节点特征,包括残基类型、表面可及性、残基深度、二级结构、药效团和扭转角。DockNet 可与当前最先进的方法相媲美,在独立测试集(DB5)上达到了高达 0.84 的曲线下面积(AUC)值,可以应用于各种不同的蛋白质结构,并且可以在无法获得准确的未结合蛋白质结构的情况下使用。

可用性和实现

DockNet 可在 https://github.com/npwilliams09/docknet 上获得,并且在 https://biosig.lab.uq.edu.au/docknet 上有一个易于使用的网络服务器。本文中所有其他基础数据都可在文章及其在线补充材料中获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f795/9825772/3782380e3b4e/btac797f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验