Kholod Olha, Basket William I, Mitchem Jonathan B, Kaifi Jussuf T, Hammer Richard D, Papageorgiou Christos N, Shyu Chi-Ren
MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65212, USA.
Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
Cancers (Basel). 2022 Nov 25;14(23):5806. doi: 10.3390/cancers14235806.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Although immunotherapy has shown potential in TNBC patients, clinical studies have only demonstrated a modest response. Therefore, the exploration of immunotherapy in combination with chemotherapy is warranted. In this project we identified immune-related gene signatures for TNBC patients that may explain differences in patients' outcomes after anti-PD-L1+chemotherapy treatment. First, we ran the exploratory subgroup discovery algorithm on the TNBC dataset comprised of 422 patients across 24 studies. Secondly, we narrowed down the search to twelve homogenous subgroups based on tumor mutational burden (TMB, low or high), relapse status (disease-free or recurred), tumor cellularity (high, low and moderate), menopausal status (pre- or post) and tumor stage (I, II and III). For each subgroup we identified a union of the top 10% of genotypic patterns. Furthermore, we employed a multinomial regression model to predict significant genotypic patterns that would be linked to partial remission after anti-PD-L1+chemotherapy treatment. Finally, we uncovered distinct immune cell populations (T-cells, B-cells, Myeloid, NK-cells) for TNBC patients with various treatment outcomes. CD4-Tn-LEF1 and CD4-CXCL13 T-cells were linked to partial remission on anti-PD-L1+chemotherapy treatment. Our informatics pipeline may help to select better responders to chemoimmunotherapy, as well as pinpoint the underlying mechanisms of drug resistance in TNBC patients at single-cell resolution.
三阴性乳腺癌(TNBC)是一种侵袭性乳腺癌亚型,治疗选择有限。尽管免疫疗法在TNBC患者中已显示出潜力,但临床研究仅证明了适度的反应。因此,有必要探索免疫疗法与化疗联合使用的情况。在本项目中,我们为TNBC患者确定了免疫相关基因特征,这可能解释抗PD-L1加化疗治疗后患者预后的差异。首先,我们在由24项研究中的422名患者组成的TNBC数据集中运行了探索性子组发现算法。其次,我们根据肿瘤突变负荷(TMB,低或高)、复发状态(无病或复发)、肿瘤细胞密度(高、低和中等)、绝经状态(绝经前或绝经后)和肿瘤分期(I、II和III)将搜索范围缩小到12个同质亚组。对于每个亚组,我们确定了前10%基因型模式的并集。此外,我们采用多项回归模型来预测与抗PD-L1加化疗治疗后部分缓解相关的重要基因型模式。最后,我们为具有不同治疗结果的TNBC患者发现了不同的免疫细胞群体(T细胞、B细胞、髓系细胞、NK细胞)。CD4-Tn-LEF1和CD4-CXCL13 T细胞与抗PD-L1加化疗治疗后的部分缓解相关。我们的信息学流程可能有助于选择对化学免疫疗法反应更好的患者,并以单细胞分辨率查明TNBC患者耐药的潜在机制。