文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电离辐射:经济作物种子引发的有效物理因子及其潜在生理机制

Ionizing Radiation: Effective Physical Agents for Economic Crop Seed Priming and the Underlying Physiological Mechanisms.

作者信息

Wang Jiaqi, Zhang Yixin, Zhou Libin, Yang Fu, Li Jingpeng, Du Yan, Liu Ruiyuan, Li Wenjian, Yu Lixia

机构信息

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730099, China.

College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Int J Mol Sci. 2022 Dec 2;23(23):15212. doi: 10.3390/ijms232315212.


DOI:10.3390/ijms232315212
PMID:36499532
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9737873/
Abstract

To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.

摘要

为克服限制作物产量的各种因素,并满足不断增长的世界人口对粮食日益增长的需求,人们提出了种子引发技术,它被认为是农业科学和食品技术领域一种很有前景的策略。这项技术有助于缩短发芽时间、提高种子活力、改善幼苗定植并增强胁迫耐受性,所有这些都有利于提高作物产量。同时,它可用于减少种子感染,以获得更好的生理或植物检疫质量。与传统方法(如水或化学试剂处理、X射线、伽马射线、电子束、质子束和重离子束)相比,作为种子引发的物理策略,它们具有省时、更有效、环保以及提高产量的确定性更高等优势。电离辐射(IR)与其他种子引发方法相比具有某些生物学优势,因为它在穿透目标生物体时会产生带电离子,并且具有足够的能量来引起生物学效应。然而,在电离引发方法在农业中广泛应用之前,需要进行广泛的研究以探索其对种子引发的影响,并关注其潜在机制。总体而言,本综述旨在强调目前对电离引发方法的理解及其在促进农业生态恢复力和应对当今粮食危机挑战方面的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/8b7b86390f13/ijms-23-15212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/60ae57f1d630/ijms-23-15212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/d7bcd976753a/ijms-23-15212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/faf6930c63b4/ijms-23-15212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/7b4cfe51de8c/ijms-23-15212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/8b7b86390f13/ijms-23-15212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/60ae57f1d630/ijms-23-15212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/d7bcd976753a/ijms-23-15212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/faf6930c63b4/ijms-23-15212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/7b4cfe51de8c/ijms-23-15212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba4/9737873/8b7b86390f13/ijms-23-15212-g005.jpg

相似文献

[1]
Ionizing Radiation: Effective Physical Agents for Economic Crop Seed Priming and the Underlying Physiological Mechanisms.

Int J Mol Sci. 2022-12-2

[2]
Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms.

Plant Cell Rep. 2022-1

[3]
Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology.

Front Plant Sci. 2016-5-12

[4]
Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity.

Sci Total Environ. 2024-11-15

[5]
Seed priming to alleviate salinity stress in germinating seeds.

J Plant Physiol. 2016-3-15

[6]
Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas.

Sci Rep. 2020-3-19

[7]
Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants.

Int J Mol Sci. 2020-11-4

[8]
Seed priming with potassium nitrate alleviates the high temperature stress by modulating growth and antioxidant potential in carrot seeds and seedlings.

BMC Plant Biol. 2024-6-26

[9]
Effect of seed priming with auxin on ROS detoxification and carbohydrate metabolism and their relationship with germination and early seedling establishment in salt stressed maize.

BMC Plant Biol. 2024-7-25

[10]
Seed Priming with Reactive Oxygen Species-Generating Nanoparticles Enhanced Maize Tolerance to Multiple Abiotic Stresses.

Environ Sci Technol. 2023-12-5

引用本文的文献

[1]
Application of ionizing radiation for crop improvement.

Planta. 2025-8-9

[2]
Comparative Analysis of the Effect of Gamma-, Electron, and Proton Irradiation on Transcriptomic Profile of L. Seedlings: In Search for Molecular Contributors to Abiotic Stress Resilience.

Plants (Basel). 2024-1-23

[3]
Cytogenetic and Biochemical Responses of Wheat Seeds to Proton Irradiation at the Bragg Peak.

Plants (Basel). 2023-2-13

本文引用的文献

[1]
Machine learning can guide food security efforts when primary data are not available.

Nat Food. 2022-9

[2]
Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives.

J Nanobiotechnology. 2022-6-3

[3]
Maize varietal replacement in Eastern and Southern Africa: Bottlenecks, drivers and strategies for improvement.

Glob Food Sec. 2022-3

[4]
Seed Dormancy Release and Germination Requirements of , an Endangered and Rare Woody Plant in Southwest China.

Front Plant Sci. 2022-1-27

[5]
Comparative Analysis of the Effect of Carbon- and Titanium-Ions Irradiation on Morpho-Anatomical and Biochemical Traits of DC. Seedlings Aimed to Space Exploration.

Plants (Basel). 2021-10-23

[6]
What we can learn from U.S. food policy response to crises of the last 20 years - Lessons for the COVID-19 era: A scoping review.

SSM Popul Health. 2022-3

[7]
Mutagenic Effect of Proton Beams Characterized by Phenotypic Analysis and Whole Genome Sequencing in Arabidopsis.

Front Plant Sci. 2021-10-28

[8]
Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms.

Plant Cell Rep. 2022-1

[9]
Comparison of low energy and high energy electron beam treatments on sensory and chemical properties of seeds.

Food Res Int. 2021-10

[10]
Low-energy electron beam has severe impact on seedling development compared to cold atmospheric pressure plasma.

Sci Rep. 2021-8-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索