文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods.

作者信息

Zhang Min, Yu Hongmei, Tang Xiaodan, Zhu Xiuhui, Deng Shuping, Chen Wei

机构信息

Department of Chemical Engineering, Yingkou Institute of Technology, Yingkou 115014, China.

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.

出版信息

Nanomaterials (Basel). 2022 Nov 24;12(23):4166. doi: 10.3390/nano12234166.


DOI:10.3390/nano12234166
PMID:36500788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9738507/
Abstract

Sudan dyes are strictly prohibited from being added to edible products as carcinogens and tetracycline hydrochloride (TC) remaining in animal-derived food may cause harm to the human body. Therefore, it is necessary to establish a high-sensitivity, simple and convenient method for the detection of Sudan dyes and TC in foods for safety purposes. In this work, multifunctional blue fluorescent carbon dots (B-CDs) were prepared by a one-step hydrothermal synthesis using glucose as the carbon source. The results show that the fluorescence intensity of B-CDs was significantly affected by the acidity of the solution and can be quenched by Sudan I, IV and TC through selective studies. Interestingly, the fluorescence quenching intensities of B-CDs have a good linear relationship with the concentration of Sudan I and IV at pH = 3-7. The wide range of pH is beneficial to broaden the application of B-CDs in a practical samples analysis. The method has been successfully applied to real food samples of tomato paste, palm oil and honey, and the detection limits are 26.3 nM, 54.2 nM and 31.1 nM for Sudan I, Sudan IV and TC, respectively. This method integrates Sudan dyes and TC into the same multifunctional B-CDs, which shows that the sensor has a great potential in food safety detection.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/42abbe9c416a/nanomaterials-12-04166-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/011b98a3ee30/nanomaterials-12-04166-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/360b69e07f4b/nanomaterials-12-04166-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/1a999fa3a227/nanomaterials-12-04166-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/00041c1c13ab/nanomaterials-12-04166-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/38db9f39cb08/nanomaterials-12-04166-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/86205020264c/nanomaterials-12-04166-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/973e543a72aa/nanomaterials-12-04166-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/48c37a28499d/nanomaterials-12-04166-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/bd85c2cf2d94/nanomaterials-12-04166-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/75ed94f35460/nanomaterials-12-04166-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/cbd48cab7dba/nanomaterials-12-04166-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/8194e88eb961/nanomaterials-12-04166-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/1908ae5d1cbc/nanomaterials-12-04166-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/b56ff8ad6102/nanomaterials-12-04166-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/195de9603461/nanomaterials-12-04166-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/86db13452706/nanomaterials-12-04166-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/9f7f0dfd12e8/nanomaterials-12-04166-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/42abbe9c416a/nanomaterials-12-04166-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/011b98a3ee30/nanomaterials-12-04166-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/360b69e07f4b/nanomaterials-12-04166-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/1a999fa3a227/nanomaterials-12-04166-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/00041c1c13ab/nanomaterials-12-04166-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/38db9f39cb08/nanomaterials-12-04166-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/86205020264c/nanomaterials-12-04166-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/973e543a72aa/nanomaterials-12-04166-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/48c37a28499d/nanomaterials-12-04166-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/bd85c2cf2d94/nanomaterials-12-04166-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/75ed94f35460/nanomaterials-12-04166-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/cbd48cab7dba/nanomaterials-12-04166-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/8194e88eb961/nanomaterials-12-04166-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/1908ae5d1cbc/nanomaterials-12-04166-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/b56ff8ad6102/nanomaterials-12-04166-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/195de9603461/nanomaterials-12-04166-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/86db13452706/nanomaterials-12-04166-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/9f7f0dfd12e8/nanomaterials-12-04166-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/9738507/42abbe9c416a/nanomaterials-12-04166-g017.jpg

相似文献

[1]
Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods.

Nanomaterials (Basel). 2022-11-24

[2]
A convenient fluorescence sensor of tetracycline based on B, N codoped carbon dots/polymer composite film.

Food Chem. 2022-3-15

[3]
Sensitive detection of Sudan dyes using tire-derived carbon dots as a fluorescent sensor.

Spectrochim Acta A Mol Biomol Spectrosc. 2020-10-5

[4]
Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines.

Anal Bioanal Chem. 2021-4

[5]
Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride.

Anal Chim Acta. 2019-3-2

[6]
One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging.

Mikrochim Acta. 2021-9-6

[7]
Waste to value transformation: Converting Carica papaya seeds into green fluorescent carbon dots for simultaneous selective detection and degradation of tetracycline hydrochloride in water.

Environ Res. 2023-6-15

[8]
Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink.

Int J Biol Macromol. 2020-12-1

[9]
Fluorescent and colorimetric dual-mode detection of tetracycline in wastewater based on heteroatoms-doped reduced state carbon dots.

Environ Pollut. 2021-8-15

[10]
Waste tobacco leaves derived carbon dots for tetracycline detection: Improving quantitative accuracy with the aid of chemometric model.

Anal Chim Acta. 2022-1-25

引用本文的文献

[1]
Fluorimetric determination of tetracycline antibiotics in animal derived foods using boron and nitrogen co-doped ceria-based nanoparticles.

Mikrochim Acta. 2024-2-20

[2]
Facile Synthesis of S-doped Carbon Quantum Dots and Their Application in the Detection of Sudan I in Saffron.

J Fluoresc. 2024-1

本文引用的文献

[1]
Anodic near-infrared electrochemiluminescence from Cu-doped CdTe quantum dots for tetracycline detection.

Anal Methods. 2021-5-27

[2]
Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines.

Anal Bioanal Chem. 2021-4

[3]
Rapid and low-temperature synthesis of N, P co-doped yellow emitting carbon dots and their applications as antibacterial agent and detection probe to Sudan Red I.

Mater Sci Eng C Mater Biol Appl. 2021-2

[4]
Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples.

Bioact Mater. 2020-11-19

[5]
A Review of Carbon Dots Produced from Biomass Wastes.

Nanomaterials (Basel). 2020-11-23

[6]
Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment.

J Mater Chem B. 2020-12-21

[7]
Luminescent Chemosensor Based on Ru(II) Bipyridine Complex for Detection of Sudan I through Inner Filter Effect.

J Fluoresc. 2020-12

[8]
Carbon Dots for Forensic Applications: A Critical Review.

Nanomaterials (Basel). 2020-8-5

[9]
Deciphering the interaction of solvents with dual emissive carbon dots: A photoluminescence study and its response for different metal ions.

Mater Sci Eng C Mater Biol Appl. 2019-11-18

[10]
Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection.

Environ Sci Pollut Res Int. 2019-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索