Centro de P&I em Sistemas Elétricos Inteligentes (CISEI) - Smart Grid Research Center, Escola Politécnica, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil.
Programa de Pós-Graduação em Informática (PPGIa), Escola Politécnica, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil.
Sensors (Basel). 2022 Nov 23;22(23):9105. doi: 10.3390/s22239105.
In a smart grid communication network, positioning key devices (routers and gateways) is an NP-Hard problem as the number of candidate topologies grows exponentially according to the number of poles and smart meters. The different terrain profiles impose distinct communication losses between a smart meter and a key device position. Additionally, the communication topology must consider the position of previously installed distribution automation devices (DAs) to support the power grid remote operation. We introduce the heuristic method AIDA (AI-driven AMI network planning with DA-based information and a link-specific propagation model) to evaluate the connectivity condition between the meters and key devices. It also uses the link-received power calculated for the edges of a Minimum Spanning Tree to propose a simplified multihop analysis. The AIDA method proposes a balance between complexity and efficiency, eliminating the need for empirical terrain characterization. Using a spanning tree to characterize the connectivity topology between meters and routers, we suggest a heuristic approach capable of alleviating complexity and facilitating scalability. In our research, the interest is in proposing a method for positioning communication devices that presents a good trade-off between network coverage and the number of communication devices. The existing literature explores the theme by presenting different techniques for ideal device placement. Still rare are the references that meticulously explore real large-scale scenarios or the communication feasibility between meters and key devices, considering the detailed topography between the devices. The main contributions of this work include: (1) The presentation of an efficient AMI planning method with a large-scale focus; (2) The use of a propagation model that does not depend on an empirical terrain classification; and (3) The use of a heuristic approach based on a spanning tree, capable of evaluating a smaller number of connections and, even so, proposing a topology that uses fewer router and gateway positions compared to an approach that makes general terrain classification. Experiments in four real large-scale scenarios, totaling over 230,000 smart meters, demonstrate that AIDA can efficiently provide high-quality connectivity demanding a reduced number of devices. Additional experiments comparing AIDA's detailed terrain-based propagation model to the Erceg-SUI Path Loss model suggest that AIDA can reach the smart meter's coverage with a fewer router positions.
在智能电网通信网络中,定位关键设备(路由器和网关)是一个 NP 难问题,因为候选拓扑的数量根据极点和智能电表的数量呈指数增长。不同的地形剖面在智能电表和关键设备位置之间造成明显的通信损耗。此外,通信拓扑结构必须考虑先前安装的配电自动化设备 (DA) 的位置,以支持电网远程操作。我们引入启发式方法 AIDA(基于 AI 的 AMI 网络规划,具有基于 DA 的信息和特定链路传播模型)来评估电表和关键设备之间的连接状态。它还使用计算出的最小生成树边缘的链路接收功率来提出简化的多跳分析。AIDA 方法在复杂性和效率之间取得平衡,无需进行经验性地形特征描述。使用生成树来描述电表和路由器之间的连接拓扑,我们提出了一种启发式方法,能够减轻复杂性并提高可扩展性。在我们的研究中,我们的兴趣在于提出一种用于定位通信设备的方法,该方法在网络覆盖范围和通信设备数量之间具有良好的折衷。现有文献通过提出不同的理想设备放置技术来探讨这个主题。仍然很少有参考文献详细探讨实际的大规模场景或考虑设备之间详细地形的电表和关键设备之间的通信可行性。这项工作的主要贡献包括:(1) 提出一种具有大规模重点的高效 AMI 规划方法;(2) 使用不依赖经验性地形分类的传播模型;(3) 使用基于生成树的启发式方法,能够评估较少数量的连接,并且即使如此,与进行一般地形分类的方法相比,提出了使用较少路由器和网关位置的拓扑。在四个真实的大规模场景中进行的实验,总计超过 230,000 个智能电表,表明 AIDA 可以有效地提供高质量的连接,而所需的设备数量较少。与 Erceg-SUI 路径损耗模型相比,AIDA 的详细地形传播模型的附加实验表明,AIDA 可以使用较少的路由器位置到达智能电表的覆盖范围。