Suppr超能文献

基于网格的无线传感器网络中的一种节能负载均衡树状数据聚合方案。

An Energy Efficient Load Balancing Tree-Based Data Aggregation Scheme for Grid-Based Wireless Sensor Networks.

机构信息

Department of Computer Science and Information Engineering, National United University, Miaoli 360302, Taiwan.

Department of Aeronautical Engineering, National Formosa University, Yunlin 632301, Taiwan.

出版信息

Sensors (Basel). 2022 Nov 29;22(23):9303. doi: 10.3390/s22239303.

Abstract

A wireless sensor network (WSN) consists of a very large number of sensors which are deployed in the specific area of interest. A sensor is an electronic device equipped with a small processor and has a small-capacity memory. The WSN has the functions of low cost, easy deployment, and random reconfiguration. In this paper, an energy-efficient load balancing tree-based data aggregation scheme (LB-TBDAS) for grid-based WSNs is proposed. In this scheme, the sensing area is partitioned into many cells of a grid and then the sensor node with the maximum residual energy is elected to be the cell head in each cell. Then, the tree-like path is established by using the minimum spanning tree algorithm. In the tree construction, it must meet the three constraints, which are the minimum energy consumption spanning tree, the network depth, and the maximum number of child nodes. In the data transmission process, the cell head is responsible for collecting the sensing data in each cell, and the collected data are transmitted along the tree-like path to the base station (BS). Simulation results show that the total energy consumption of LB-TBDAS is significantly less than that of GB-PEDAP and PEDAP. Compared to GB-PEDAP and PEDAP, the proposed LB-TBDAS extends the network lifetime by more than 100%. The proposed LB-TBDAS can avoid excessive energy consumption of sensor nodes during multi-hop data transmission and can also avoid the hotspot problem of WSNs.

摘要

无线传感器网络(WSN)由大量传感器组成,这些传感器部署在特定的感兴趣区域。传感器是一种配备小型处理器和小容量存储器的电子设备。WSN 具有低成本、易于部署和随机重构的功能。本文提出了一种基于网格的 WSN 的节能负载均衡树状数据聚合方案(LB-TBDAS)。在该方案中,将感应区域划分为许多网格单元,然后选择具有最大剩余能量的传感器节点作为每个单元的单元头。然后,使用最小生成树算法建立树状路径。在树的构建过程中,必须满足三个约束条件,即最小能量消耗生成树、网络深度和最大子节点数。在数据传输过程中,单元头负责收集每个单元中的感应数据,收集的数据沿树状路径传输到基站(BS)。仿真结果表明,LB-TBDAS 的总能耗明显低于 GB-PEDAP 和 PEDAP。与 GB-PEDAP 和 PEDAP 相比,所提出的 LB-TBDAS 使网络寿命延长了 100%以上。所提出的 LB-TBDAS 可以避免多跳数据传输过程中传感器节点的能量消耗过大,也可以避免 WSN 的热点问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6716/9738405/1308b23a199e/sensors-22-09303-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验