Suppr超能文献

基于学习的车云协同方法,用于联合估计能量状态和健康状态。

A Learning-Based Vehicle-Cloud Collaboration Approach for Joint Estimation of State-of-Energy and State-of-Health.

机构信息

School of Transportation Science and Engineering, Beihang University, Beijing 100191, China.

Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy.

出版信息

Sensors (Basel). 2022 Dec 4;22(23):9474. doi: 10.3390/s22239474.

Abstract

The state-of-energy (SOE) and state-of-health (SOH) are two crucial quotas in the battery management systems, whose accurate estimation is facing challenges by electric vehicles' (EVs) complexity and changeable external environment. Although the machine learning algorithm can significantly improve the accuracy of battery estimation, it cannot be performed on the vehicle control unit as it requires a large amount of data and computing power. This paper proposes a joint SOE and SOH prediction algorithm, which combines long short-term memory (LSTM), Bi-directional LSTM (Bi-LSTM), and convolutional neural networks (CNNs) for EVs based on vehicle-cloud collaboration. Firstly, the indicator of battery performance degradation is extracted for SOH prediction according to the historical data; the Bayesian optimization approach is applied to the SOH prediction combined with Bi-LSTM. Then, the CNN-LSTM is implemented to provide direct and nonlinear mapping models for SOE. These direct mapping models avoid parameter identification and updating, which are applicable in cases with complex operating conditions. Finally, the SOH correction in SOE estimation achieves the joint estimation with different time scales. With the validation of the National Aeronautics and Space Administration battery data set, as well as the established battery platform, the error of the proposed method is kept within 3%. The proposed vehicle-cloud approach performs high-precision joint estimation of battery SOE and SOH. It can not only use the battery historical data of the cloud platform to predict the SOH but also correct the SOE according to the predicted value of the SOH. The feasibility of vehicle-cloud collaboration is promising in future battery management systems.

摘要

荷电状态 (SoC) 和健康状态 (SoH) 是电池管理系统中的两个关键指标,其准确估计受到电动汽车 (EV) 复杂性和外部环境变化的挑战。虽然机器学习算法可以显著提高电池估计的准确性,但由于其需要大量数据和计算能力,因此无法在车辆控制单元上执行。本文提出了一种基于车云协作的电动汽车的联合 SoC 和 SoH 预测算法,该算法结合了长短时记忆 (LSTM)、双向 LSTM (Bi-LSTM) 和卷积神经网络 (CNN)。首先,根据历史数据提取电池性能退化指标,用于 SoH 预测;贝叶斯优化方法应用于结合 Bi-LSTM 的 SoH 预测。然后,实现 CNN-LSTM 为 SoC 提供直接和非线性映射模型。这些直接映射模型避免了参数识别和更新,适用于复杂工作条件下的情况。最后,在 SoC 估计中对 SoH 进行修正,实现不同时间尺度的联合估计。通过对美国国家航空航天局 (NASA) 电池数据集以及建立的电池平台的验证,该方法的误差保持在 3%以内。所提出的车云方法可以实现电池 SoC 和 SoH 的高精度联合估计。它不仅可以利用云平台的电池历史数据来预测 SoH,还可以根据预测的 SoH 值来修正 SoC。车云协作在未来的电池管理系统中具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验