Suppr超能文献

基于深度学习的 [F]氟胆碱 PET/CT 检测和定位甲状旁腺功能亢进:模型性能及与人类专家的比较。

Detection and localization of hyperfunctioning parathyroid glands on [F]fluorocholine PET/ CT using deep learning - model performance and comparison to human experts.

机构信息

Department of Radiology, General Hospital Novo Mesto, Novo Mesto Slovenia.

Department for Nuclear Medicine, University Medical Centre Ljubljana, Slovenia.

出版信息

Radiol Oncol. 2022 Dec 13;56(4):440-452. doi: 10.2478/raon-2022-0037. eCollection 2022 Dec 1.

Abstract

BACKGROUND

In the setting of primary hyperparathyroidism (PHPT), [F]fluorocholine PET/CT (FCH-PET) has excellent diagnostic performance, with experienced practitioners achieving 97.7% accuracy in localising hyperfunctioning parathyroid tissue (HPTT). Due to the relative triviality of the task for human readers, we explored the performance of deep learning (DL) methods for HPTT detection and localisation on FCH-PET images in the setting of PHPT.

PATIENTS AND METHODS

We used a dataset of 93 subjects with PHPT imaged using FCH-PET, of which 74 subjects had visible HPTT while 19 controls had no visible HPTT on FCH-PET. A conventional Resnet10 as well as a novel mPETResnet10 DL model were trained and tested to detect (present, not present) and localise (upper left, lower left, upper right or lower right) HPTT. Our mPETResnet10 architecture also contained a region-of-interest masking algorithm that we evaluated qualitatively in order to try to explain the model's decision process.

RESULTS

The models detected the presence of HPTT with an accuracy of 83% and determined the quadrant of HPTT with an accuracy of 74%. The DL methods performed statistically worse (p < 0.001) in both tasks compared to human readers, who localise HPTT with the accuracy of 97.7%. The produced region-of-interest mask, while not showing a consistent added value in the qualitative evaluation of model's decision process, had correctly identified the foreground PET signal.

CONCLUSIONS

Our experiment is the first reported use of DL analysis of FCH-PET in PHPT. We have shown that it is possible to utilize DL methods with FCH-PET to detect and localize HPTT. Given our small dataset of 93 subjects, results are nevertheless promising for further research.

摘要

背景

在原发性甲状旁腺功能亢进症(PHPT)的情况下,[F]氟胆碱 PET/CT(FCH-PET)具有出色的诊断性能,经验丰富的从业者在定位功能性甲状旁腺组织(HPTT)方面的准确率达到 97.7%。由于人类读者完成这项任务相对简单,我们探讨了深度学习(DL)方法在 PHPT 背景下用于 FCH-PET 图像中 HPTT 检测和定位的性能。

患者和方法

我们使用了一个由 93 名 PHPT 患者的 FCH-PET 图像组成的数据集,其中 74 名患者的 FCH-PET 上可见 HPTT,而 19 名对照者的 FCH-PET 上未见 HPTT。我们训练和测试了传统的 Resnet10 以及新型的 mPETResnet10 DL 模型,以检测(存在、不存在)和定位(左上、左下、右上或右下)HPTT。我们的 mPETResnet10 架构还包含一个感兴趣区域掩模算法,我们对其进行了定性评估,以尝试解释模型的决策过程。

结果

该模型检测 HPTT 存在的准确率为 83%,确定 HPTT 象限的准确率为 74%。与准确率为 97.7%的人类读者相比,DL 方法在这两个任务中的表现均统计学上更差(p<0.001)。生成的感兴趣区域掩模,虽然在定性评估模型决策过程时没有显示出一致的附加值,但正确地识别了 PET 信号的前景。

结论

我们的实验是首次报道使用 DL 分析 FCH-PET 在 PHPT 中的应用。我们已经证明,使用 DL 方法对 FCH-PET 进行 HPTT 的检测和定位是可行的。鉴于我们的 93 名患者的小数据集,结果仍然为进一步研究提供了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6f/9784363/3ab975fa647c/raon-56-440-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验