Department of Energy Science and Engineering, Indian Institute of Technology Bombay (IITB), Powai, Mumbai-400076, India.
Phys Chem Chem Phys. 2022 Dec 21;25(1):700-707. doi: 10.1039/d2cp04331a.
The rate of electron-transfer reactions, irrespective of whether electrochemical or electrocatalytic, is universally explained on the basis of Butler-Volmer (B-V) theory. The charge-transfer coefficient () obtained is typically in the range of 0.0-1.0, and is 0.6 ± 0.1 for the oxygen reduction reaction (ORR) on Pt, which is the subject of the present investigation. Alternatively, can be estimated from the derivative of the change in Gibbs free energy of activation (Δ) with respect to the overpotential () and has the unreasonably high value of 1.1 ± 0.2. The origin of the difference in the values obtained from these two methods is investigated. The value of greater than 1.0 stems from the alternative potential-dependent lower energy barrier path for the formation of the activated complex, offered by the electrified catalyst surface. For the electrocatalytic reaction, the value derived from the Δ is the true kinetic parameter. The theoretical background of such processes is presented to justify our claims.
电子转移反应的速率,无论是电化学的还是电催化的,都普遍基于 Butler-Volmer(B-V)理论来解释。所得到的电荷转移系数 () 通常在 0.0 到 1.0 之间,而对于本研究的主题——铂上的氧还原反应(ORR),则为 0.6 ± 0.1。或者,可以根据吉布斯自由能变化(Δ)对过电势 () 的导数来估计,并且具有不合理的高值 1.1 ± 0.2。从这两种方法得到的 值之间的差异的起源被调查。从这两种方法得到的 值大于 1.0 的原因是,由带电催化剂表面提供的形成活化复合物的替代的、与电势有关的、更低能量势垒路径。对于电催化反应,从 Δ 导出的值是真正的动力学参数。介绍了这种过程的理论背景,以证明我们的主张。