Suppr超能文献

化学与电催化氧气析出中的偏析的关键作用。

Key role of chemistry versus bias in electrocatalytic oxygen evolution.

机构信息

Department of Chemistry, Chemical and Materials Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Berlin, Germany.

Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.

出版信息

Nature. 2020 Nov;587(7834):408-413. doi: 10.1038/s41586-020-2908-2. Epub 2020 Nov 18.

Abstract

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels. Electrocatalysts accelerate the reaction by facilitating the required electron transfer, as well as the formation and rupture of chemical bonds. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium or steady-state assumptions. However, the charging of catalyst surfaces under bias also affects bond formation and rupture, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

摘要

氧析出反应在许多替代能源方案中起着重要作用,因为它提供了将可再生电力转化为化学燃料所需的质子和电子。电催化剂通过促进所需的电子转移,以及化学键的形成和断裂,来加速反应。这种对根本不同过程的参与导致了复杂的电化学动力学,难以理解和控制,而且通常指数依赖于过电势。当施加的偏压使反应与关注电子转移的现象学 Butler-Volmer 理论一致时,就会出现这种行为,这使得在准平衡或稳态假设下可以使用 Tafel 分析来获得机械洞察力。然而,偏压下催化剂表面的充电也会影响键的形成和断裂,这种影响对电催化速率的影响在现象学 Tafel 分析中没有得到考虑,而且通常是未知的。在这里,我们报告了在氧化铱上进行的脉冲伏安法和原位 X 射线吸收光谱测量,表明外加偏压不会直接作用于反应坐标,而是通过催化剂中电荷的积累来影响电催化产生的电流。我们发现,活化自由能随存储的氧化电荷数量线性降低,并表明这种关系是电催化性能的基础,可以通过测量和计算来评估。我们预计这些发现和我们的方法将有助于更好地理解其他电催化材料,并设计具有改进性能的系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验