Suppr超能文献

3D 共掺杂 α-Ni(OH) 纳米片用于超稳定、高倍率的 Ni-Zn 电池。

3D Co-Doping α-Ni(OH) Nanosheets for Ultrastable, High-Rate Ni-Zn Battery.

机构信息

School of Materials Science and Engineering, Chang'an University, Xi'an, 710061, China.

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.

出版信息

Small. 2023 Feb;19(8):e2206287. doi: 10.1002/smll.202206287. Epub 2022 Dec 11.

Abstract

The α-Ni(OH) is regarded as one promising cathode for aqueous nickel-zinc batteries due to its high theoretical capacity of ≈480 mAh g , its practical deployment however suffers from the poor stability in strong alkaline solution, intrinsic low electrical conductivity as well as the retarded ionic diffusion. Herein, a 3D (three dimensional) macroporous α-Ni(OH) nanosheets with Co doping is designed through a facile and easily scalable electroless plating combined with electrodeposition strategy. The unique micrometer-sized 3D pores come from Ni substrate and rich voids between Co-doping α-Ni(OH) nanosheets can synergistically afford facile, interconnected ionic diffusion channels, sufficient free space for accommodating its volume changes during cycling; meanwhile, the Co-doping can stabilize the structural robustness of the α-Ni(OH) in the alkaline electrolyte during cycling. Thus, the 3D α-Ni(OH) shows a high capacity of 284 mAh g at 0.5 mA cm with an excellent retention of 78% even at 15 mA cm , and more than 2000 stable cycles at 6 mA cm , as well as the robust cycling upon various flexible batteries. This work provides a simple and efficient pathway to enhance the electrochemical performance of Ni-Zn batteries through improving ionic transport kinetics and stabilizing crystal structure of cathodes.

摘要

α-Ni(OH) 由于其高达 ≈480 mAh g 的理论比容量,被认为是一种很有前途的水系镍锌电池正极材料。然而,其实际应用受到强堿性溶液中稳定性差、本征电导率低以及离子扩散缓慢的限制。在此,通过一种简便且易于扩展的化学镀与电沉积相结合的策略,设计了一种具有 Co 掺杂的 3D(三维)大孔α-Ni(OH)纳米片。独特的微米级 3D 孔来自 Ni 基底,而 Co 掺杂α-Ni(OH)纳米片之间的丰富空隙可以协同提供易于连通的离子扩散通道,为其在循环过程中的体积变化提供充足的自由空间;同时,Co 掺杂可以在碱性电解液中稳定α-Ni(OH)的结构完整性。因此,3Dα-Ni(OH)在 0.5 mA cm 时具有 284 mAh g 的高容量,在 15 mA cm 时保持了 78%的优异倍率性能,在 6 mA cm 时超过 2000 次稳定循环,以及在各种柔性电池中的稳健循环。这项工作通过提高离子传输动力学和稳定正极的晶体结构,为提高镍锌电池的电化学性能提供了一种简单而有效的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验