Suppr超能文献

限制、缺陷和界面操纵 FeSe/3D 石墨烯,以实现快速稳定的钾离子存储。

Confine, Defect, and Interface Manipulation of Fe Se /3D Graphene Targeting Fast and Stable Potassium-Ion Storage.

机构信息

State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China.

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 621010, P. R. China.

出版信息

Small. 2023 Feb;19(8):e2206400. doi: 10.1002/smll.202206400. Epub 2022 Dec 11.

Abstract

The fast electrochemical kinetics behavior and long cycling life have been the goals in developing anode materials for potassium ion batteries (PIBs). On account of high electron conductivity and theoretical capacity, transition metal selenides have been deemed as one of the promising anode materials for PIBs. Herein, a systematic structural manipulation strategy, pertaining to the confine of Fe Se particles by 3D graphene and the dual phosphorus (P) doping to the Fe Se /3DG (DP-Fe Se /3DG), has been proposed to fulfill the efficient potassium-ion (K-ion) evolution kinetics and thus boost the K-ion storage performance. The theoretical calculation results demonstrate that the well-designed dual P doping interface can effectively promote K-ion adsorption behavior and provide a low energy barrier for K-ion diffusion. The insertion-conversion and adsorption mechanism for multi potassium storage behavior in DP-Fe Se /3DG composite has been also deciphered by combining the in situ/ex situ X-ray diffraction and operando Raman spectra evidences. As expected, the DP-Fe Se /3DG anode exhibits superior rate capability (120.2 mA h g at 10 A g ) and outstanding cycling performance (157.9 mA h g after 1000 cycles at 5 A g ).

摘要

快速的电化学动力学行为和长循环寿命一直是开发钾离子电池 (PIB) 阳极材料的目标。由于具有高电子电导率和理论容量,过渡金属硒化物被认为是 PIB 中很有前途的阳极材料之一。在此,提出了一种系统的结构调控策略,即将 FeSe 颗粒限制在 3D 石墨烯内,并对 FeSe/3DG 进行双磷 (P) 掺杂(DP-FeSe/3DG),以实现高效的钾离子 (K+) 演化动力学,从而提高 K+存储性能。理论计算结果表明,精心设计的双 P 掺杂界面可以有效促进 K+吸附行为,并为 K+扩散提供低能垒。通过结合原位/非原位 X 射线衍射和原位拉曼光谱证据,还揭示了 DP-FeSe/3DG 复合材料中多钾存储行为的插入-转化和吸附机理。不出所料,DP-FeSe/3DG 阳极表现出优异的倍率性能(在 10 A g 时为 120.2 mA h g-1)和出色的循环性能(在 5 A g 时 1000 次循环后为 157.9 mA h g-1)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验