College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
J Colloid Interface Sci. 2023 Aug 15;644:10-18. doi: 10.1016/j.jcis.2023.04.035. Epub 2023 Apr 11.
Recently, potassium-ion batteries (PIBs) have been considered as one of the most promising energy storage systems; however, the slow kinetics and large volume variation induced by the large radius of potassium ions (K) during chemical reactions lead to inferior structural stability and weak electrochemical activity for most potassium storage anodes. Herein, a multilevel space confinement strategy is proposed for developing zinc-cobalt bimetallic selenide (ZnSe/CoSe@NC@C@rGO) as high-efficient anodes for PIBs by in-situ carbonizing and subsequently selenizing the resorcinol-formaldehyde (RF)-coated zeolitic imidazolate framework-8/zeolitic imidazolate framework-67 (ZIF-8/ZIF-67) encapsulated into 2D graphene. The highly porous carbon microcubes derived from ZIF-8/ZIF-67 and carbon shell arising from RF provide rich channels for ion/electron transfer, present a rigid skeleton to ensure the structural stability, offer space for accommodating the volume change, and minimize the agglomeration of active material during the insertion/extraction of large-radius K. In addition, the three-dimensional (3D) carbon network composed of graphene and RF-derived carbon-coated microcubes accelerates the electron/ion transfer rate and improves the electrochemical reaction kinetics of the material. As a result, the as-synthesized ZnSe/CoSe@NC@C@rGO as the anode of PIBs possesses the excellent rate capability of 203.9 mA h g at 5 A g and brilliant long-term cycling performance of 234 mA h g after 2,000 cycles at 2 A g. Ex-situ X-ray diffraction (Ex-situ XRD) diffraction reveals that the intercalation/de-intercalation of K proceeds through the conversion-alloying reaction. The proposed strategy based on the spatial confinement engineering is highly effective to construct high-performance anodes for PIBs.
最近,钾离子电池(PIBs)被认为是最有前途的储能系统之一;然而,由于钾离子(K)的较大半径在化学反应过程中导致较慢的动力学和较大的体积变化,大多数钾存储阳极的结构稳定性和电化学活性较差。在此,通过原位碳化和随后硒化包裹在 2D 石墨烯中的间苯二酚-甲醛(RF)包覆沸石咪唑酯骨架-8/沸石咪唑酯骨架-67(ZIF-8/ZIF-67),提出了一种多级空间限制策略,用于开发高效的锌钴双金属硒化物(ZnSe/CoSe@NC@C@rGO)作为 PIBs 的阳极。ZIF-8/ZIF-67 衍生的高度多孔碳微球和 RF 衍生的碳壳为离子/电子转移提供了丰富的通道,提供了刚性骨架以确保结构稳定性,为体积变化提供了空间,并在大半径 K 的插入/提取过程中最小化了活性材料的团聚。此外,由石墨烯和 RF 衍生的碳涂层微球组成的三维(3D)碳网络加速了电子/离子转移速率,并提高了材料的电化学反应动力学。结果,作为 PIBs 阳极的合成的 ZnSe/CoSe@NC@C@rGO 具有出色的倍率性能,在 5 A g 时为 203.9 mA h g,在 2 A g 时经过 2000 次循环后具有出色的长期循环性能,为 234 mA h g。原位 X 射线衍射(Ex-situ XRD)衍射表明 K 的插层/脱插层通过转化-合金化反应进行。基于空间限制工程的提出的策略对于构建高性能的 PIBs 阳极非常有效。