Pederson Ryan, Kozlowski John, Song Ruyi, Beall Jackson, Ganahl Martin, Hauru Markus, Lewis Adam G M, Yao Yi, Mallick Shrestha Basu, Blum Volker, Vidal Guifre
Department of Physics and Astronomy, University of California, Irvine, California92617, United States.
X, the Moonshot Factory, Mountain View, California94043, United States.
J Chem Theory Comput. 2023 Jan 10;19(1):25-32. doi: 10.1021/acs.jctc.2c00876. Epub 2022 Dec 12.
We demonstrate the use of Googles cloud-based Tensor Processing Units (TPUs) to accelerate and scale up conventional (cubic-scaling) density functional theory (DFT) calculations. Utilizing 512 TPU cores, we accomplish the largest such DFT computation to date, with 247848 orbitals, corresponding to a cluster of 10327 water molecules with 103270 electrons, all treated explicitly. Our work thus paves the way toward accessible and systematic use of conventional DFT, free of any system-specific constraints, at unprecedented scales.
我们展示了如何使用谷歌基于云的张量处理单元(TPU)来加速和扩大传统(立方标度)密度泛函理论(DFT)计算。利用512个TPU核心,我们完成了迄今为止此类最大规模的DFT计算,涉及247848个轨道,对应于一个由10327个水分子和103270个电子组成的簇,所有这些都进行了显式处理。因此,我们的工作为以前所未有的规模无障碍、系统地使用传统DFT铺平了道路,且不受任何特定系统的限制。