Di Felice Rosa, Mayes Maricris L, Richard Ryan M, Williams-Young David B, Chan Garnet Kin-Lic, de Jong Wibe A, Govind Niranjan, Head-Gordon Martin, Hermes Matthew R, Kowalski Karol, Li Xiaosong, Lischka Hans, Mueller Karl T, Mutlu Erdal, Niklasson Anders M N, Pederson Mark R, Peng Bo, Shepard Ron, Valeev Edward F, van Schilfgaarde Mark, Vlaisavljevich Bess, Windus Theresa L, Xantheas Sotiris S, Zhang Xing, Zimmerman Paul M
Departments of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States.
CNR-NANO Modena, Modena 41125, Italy.
J Chem Theory Comput. 2023 Oct 24;19(20):7056-7076. doi: 10.1021/acs.jctc.3c00419. Epub 2023 Sep 28.
The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.
量子化学预测复杂化学系统基态和激发态性质的能力推动了计算量子化学软件的发展,该软件整合了理论、应用数学和计算机科学方面的进展。与百亿亿次技术相关的新计算范式的出现也带来了重大挑战,这需要一种灵活的前瞻性策略来充分利用现有和即将出现的计算资源。在这种背景下,计算化学软件开发的可持续性和互操作性是最紧迫的问题之一。从这个角度出发,我们着眼于充分利用百亿亿次资源,讨论软件基础设施的需求和投资,并为下一代科学问题和科学发现提供独特的计算工具。