Molecular Virology unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
Computational Biology and Bioinformatics unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
PLoS Pathog. 2022 Dec 12;18(12):e1011042. doi: 10.1371/journal.ppat.1011042. eCollection 2022 Dec.
Proteins from some unrelated pathogens, including small RNA viruses of the family Picornaviridae, large DNA viruses such as Kaposi sarcoma-associated herpesvirus and even bacteria of the genus Yersinia can recruit cellular p90-ribosomal protein S6 kinases (RSKs) through a common linear motif and maintain the kinases in an active state. On the one hand, pathogens' proteins might hijack RSKs to promote their own phosphorylation (direct target model). On the other hand, some data suggested that pathogens' proteins might dock the hijacked RSKs toward a third interacting partner, thus redirecting the kinase toward a specific substrate. We explored the second hypothesis using the Cardiovirus leader protein (L) as a paradigm. The L protein is known to trigger nucleocytoplasmic trafficking perturbation, which correlates with hyperphosphorylation of phenylalanine-glycine (FG)-nucleoporins (FG-NUPs) such as NUP98. Using a biotin ligase fused to either RSK or L, we identified FG-NUPs as primary partners of the L-RSK complex in infected cells. An L protein mutated in the central RSK-interaction motif was readily targeted to the nuclear envelope whereas an L protein mutated in the C-terminal domain still interacted with RSK but failed to interact with the nuclear envelope. Thus, L uses distinct motifs to recruit RSK and to dock the L-RSK complex toward the FG-NUPs. Using an analog-sensitive RSK2 mutant kinase, we show that, in infected cells, L can trigger RSK to use NUP98 and NUP214 as direct substrates. Our data therefore illustrate a novel virulence mechanism where pathogens' proteins hijack and retarget cellular protein kinases toward specific substrates, to promote their replication or to escape immunity.
来自某些不相关病原体的蛋白质,包括小 RNA 病毒科的小 RNA 病毒、大型 DNA 病毒(如卡波西肉瘤相关疱疹病毒)甚至耶尔森氏菌属的细菌,都可以通过共同的线性基序招募细胞 p90-核糖体蛋白 S6 激酶(RSKs),并使激酶保持激活状态。一方面,病原体蛋白可能劫持 RSK 以促进自身磷酸化(直接靶标模型)。另一方面,一些数据表明,病原体蛋白可能将劫持的 RSK 停靠在第三个相互作用的伴侣上,从而将激酶重新定向到特定的底物上。我们使用心脏病毒(Cardiovirus)的衣壳蛋白(L)作为范例来探索第二种假设。已知 L 蛋白会触发核质转运扰动,这与苯丙氨酸-甘氨酸(FG)核孔蛋白(FG-NUPs)如 NUP98 的过度磷酸化相关。我们使用融合了 RSK 或 L 的生物素连接酶,鉴定出 FG-NUPs 是感染细胞中 L-RSK 复合物的主要伴侣。在中央 RSK 相互作用基序中发生突变的 L 蛋白很容易被靶向核膜,而在 C 末端结构域中发生突变的 L 蛋白仍与 RSK 相互作用,但不能与核膜相互作用。因此,L 使用不同的基序来招募 RSK 并将 L-RSK 复合物靶向 FG-NUPs。使用类似物敏感的 RSK2 突变激酶,我们表明,在感染细胞中,L 可以触发 RSK 将 NUP98 和 NUP214 作为直接底物。因此,我们的数据说明了一种新的毒力机制,即病原体蛋白劫持和重新定向细胞蛋白激酶,以促进其复制或逃避免疫。